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Synopsis: Transarterial radioembolization (TARE) is a treatment for liver cancer, during which radioactive microspheres are administered through the hepatic artery. Microspheres 

containing holmium-166 enable MRI-based dosimetry, based on subtraction of pre- and post-treatment 𝑅2
∗ values. This subtraction is performed using a mean pre-treatment 𝑅2

∗ value. 

This does however not take pre-existing differences of 𝑅2
∗ values into account, introducing an error in the dosimetry. In this work a voxelwise subtraction method is presented, using 

deformable registration to transform the pre-treatment 𝑅2
∗ map to the post-treatment 𝑅2

∗ map, enabling voxel-by-voxel subtraction. This method does take 𝑅2
∗ differences into account 

and improves MRI-based dosimetry.  

Introduction: Transarterial radioembolization (TARE) is a locoregional treatment for liver malignancies. During TARE, beta-emitting microspheres (containing yttrium-90 (90Y) or 

holmium-166 (166Ho)) are injected into the hepatic artery, and lodge in the liver microvasculature where they mostly irradiate the tumours. A key characteristic of the 166Ho 

microspheres is their paramagnetic property, enabling MR imaging and dosimetry. MRI-based dosimetry of 166Ho microspheres is based on a local increase of the transverse 

relaxation rate (𝑅2
∗)1. To quantify this increase, a multi gradient echo (MGRE) sequence is acquired before and after treatment, from which 𝑅2

∗ maps can be calculated. Subtraction of 

the pre- and post-treatment 𝑅2
∗ map leads to a ∆𝑅2

∗ map, which corresponds to the distribution of the 166Ho microspheres in the tissue. The ∆𝑅2
∗ map is proportional to the absorbed 

dose, and therefore a dose map can be constructed. However, finding ∆𝑅2
∗ using a direct voxel-to-voxel subtraction of pre- and post-treatment 𝑅2

∗ values is challenging due to the 

deformability of the liver. Therefore a mean pre-treatment 𝑅2
∗ value is computed to perform the subtraction in the current workflow. The drawback of this method is that the 

heterogeneity of 𝑅2
∗ values before treatment is not taken into account, leading to inaccuracies in the estimated dose distribution2. In this work we aim to increase the accuracy in the 

dose quantification by using a deformable registration algorithm to enable a voxelwise subtraction of the 𝑅2
∗ maps. 

Methods: A MGRE was acquired directly before and after 166Ho TARE for six patients. Furthermore, a SPECT/CT was acquired of all patients two days after TARE, which was 

used to compare to MRI-based dosimetry. To quantify pre-existing 𝑅2
∗ differences between tumour and healthy liver tissue, pre-treatment 𝑅2

∗ values were analyzed. Conventional 

quantification of the MR images was performed using the mean subtraction method (mean method), during which a mean pre-treatment 𝑅2
∗ was subtracted from the post-treatment 𝑅2

∗ 

map. This quantification was executed in a research version of the clinically used software for 166Ho dose evaluation (Q-Suite™ 2.0, Quirem Medical, Deventer, The Netherlands), of 

which the steps can be seen in Figure 1. For the newly developed voxelwise subtraction method (VW method) the same workflow was followed, but the subtraction step was replaced 

by in-house developed code, as can be seen in Figure 1 as well. Pre-treatment imaging and 𝑅2
∗ maps were mapped to the post-treatment imaging and 𝑅2

∗ maps using an automatic 

affine registration followed by a deformable registration using symmetric normalization and mutual information, as implemented in the SyN algorithm of the Advanced 

Normalization Tools (ANTs) Python package3,4. Thereafter, the ∆𝑅2
∗ map was obtained by a voxelwise subtraction of the post-treatment and pre-treatment ∆𝑅2

∗ maps. The accuracy of 

the registration was scored using the Dice Similarity Coefficient (DSC). 

Results: Pre-treatment 𝑅2
∗ values were lower in tumours (mean 38.6 s-1, range: 24.4 – 54.7 s-1) than in healthy liver tissue (mean 55.7 s-1, range: 41.4 – 73.8 s-1), while the mean 𝑅2

∗ of 

the total liver volume was 48.4 s-1 (range: 34.5 – 68.3 s-1). Two examples of pre-treatment 𝑅2
∗ distributions are visualized in Figure 2. Image registration resulted in an increase of 

mean DSC of 0.83 (range: 0.70 – 0.88) to 0.95 (range: 0.92 – 0.97). Mean dose for both MRI-based quantification methods are stated in Table 1. For all patients, voxelwise 

subtraction-based dose maps yielded a higher tumour dose (mean increase of 9.7%) and lower healthy liver dose (mean decrease of 16.9%) compared to the mean method. 166Ho-

SPECT dosimetry showed a lower tumour dose than the MRI-based methods (mean 63.3 Gy, range 22.0 – 89.3 Gy), and a healthy liver dose higher than the VW method but lower 

than the mean method (mean 33.3 Gy, range 20.0 – 51.0 Gy). The mean whole liver dose was comparable for all dosimetry methods. Voxelwise subtraction-based dose maps visually 

corresponded better to SPECT-based dose maps, as can be seen in Figure 3. 

Discussion: The ability to perform MRI-based dosimetry after TARE is one of the unique characteristics of the 166Ho microspheres. In this work, we have presented a robust 

alternative for the current method of calculating the ∆𝑅2
∗ map, based on voxelwise subtraction, improving the accuracy of MRI-based dosimetry. As opposed to the mean method, the 

VW method takes local differences in the pre 𝑅2
∗ values into account for the dosimetry. Quantification of these local differences resulted in a substantially lower mean 𝑅2

∗ in tumours 

compared to healthy liver tissue and whole liver values. This leads to an underestimation of the tumour dose, and an overestimation of the healthy liver dose when the mean method is 

used. Furthermore, the VW method shows better visual comparability to SPECT/CT than the mean method. We therefore argue that the VW method is intrinsically superior to the 

mean method, provided that the image registration prior to subtraction is performed adequately.  

Conclusion: The VW method enables a voxelwise pre- and post-treatment subtraction by using deformable registration, and presents an accurate alternative to the currently 

implemented mean method for MRI-based dosimetry of 166Ho microspheres. 
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Figure 1: Workflow of the post-processing as implemented in Q-suite (white background) and the additional post-processing for the voxelwise (VW) subtraction method (grey background). In the 

conventional workflow a mean pre-treatment 𝑅2
∗ is calculated and subtracted from all post-treatment 𝑅2

∗ values. For the voxelwise method the transformed pre-treatment 𝑅2
∗ values are subtracted voxelwise 

from the post-treatment 𝑅2
∗ values. MGRE = multigradient echo sequence. 

 

Figure 2: 𝑅2
∗ distributions before treatment of patient 1 (A) and patient 4 (B) classified as either originating from tumours or healthy liver tissue. Additionally, the mean 𝑅2

∗ value of the entire liver volume is 

visualized. In general, the mean 𝑅2
∗ of the entire liver volume gives an overestimation of the tumour 𝑅2

∗ values. 

Table 1: Mean dose per volume of interest as calculated through the mean method and the VW method. Difference indicates the percentual difference between the VW method and the mean method. Data 

is presented as mean with range between brackets. 

 

 

Figure 3: A patient with liver metastases originating from breast cancer (patient 1). A: a T1-weighted MRI in which the tumour is delineated with a dashed line. B: 166Ho-SPECT fused with a low-dose CT. 
C and D are MRI-based dose maps, C was generated through the mean method, D through the VW method. The arrow with asterisk (Figure 3C) indicates the overestimation of the dose in the healthy liver 

tissue for the mean method as compared to the SPECT images. Other arrowheads indicate similarities between the dose map resulting from the VW method and the SPECT images. 
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Amyloid burden and vascular risk factors correlate with regional cerebral blood flow in a 

cognitively unimpaired population 

 

 

 

Synopsis: Studying the association between cerebral blood flow (CBF), amyloid burden, and vascular risk factors in a cognitively unimpaired elderly population could clarify the role 

of CBF as a biomarker of cognitive decline. In 196 cognitively unimpaired participants, regional CBF was associated with regional amyloid-PET Centiloid. Vascular risk scores as 

measured by the Framingham risk score combined with amyloid Centiloid values were associated with increased CBF in vascular territories. Longitudinally, global CBF changes were 

associated with baseline precuneus amyloid burden. 

Introduction: Recent findings indicate considerable overlap between cerebrovascular disease and Alzheimer's disease (AD), suggesting additive or synergistic effects of both 

pathologies on cognitive decline1,2. Perfusion imaging holds great promise for detecting alterations in neuronal functioning at early stages of cognitive decline3 since adequate cerebral 

blood flow (CBF) is essential to maintain neuronal metabolism and brain function. Supply and demand of blood flow in the brain can be affected by, respectively, the loss of vascular 

health and the decrease of neuronal activity — as a consequence of AD4.  This study investigates to what extent the vascular and AD components affect CBF and how they interact 

with each other. We hypothesize that the amyloid burden in early-accumulation regions5,6 and vascular risk factors are related to brain perfusion alterations in an elderly cognitively 

unimpaired (CU) population. 

Methods: A total of 196 CU participants, aged 70±7.3 years; 57% female, were included from the EMIF-AD PreclinAD7 Twin60++ cohort. Four years after baseline, 135 participants 

were scanned again with an identical scanner, scanner software, and scan protocol. The cardiovascular risk profile for each participant was summarized using the Framingham score 

index8. Amyloid-PET using the [18F]flutemetamol radiotracer was used to image cortical amyloid burden and quantified using the Centiloid method9 globally and for four early 

amyloid accumulation regions of interest (ROIs) obtained from the LEAP atlas10,11: Early Frontal Gyrus —orbital frontal + basal frontal — Precuneus, Superior Frontal Gyrus, and 

Lingual Gyrus (Figure 1). Whole-brain 3D T1-weighted and 2D EPI Arterial Spin Labeling (ASL) images were obtained using a 3T PET-MRI Ingenuity scanner (Philips Healthcare, 

Best, The Netherlands). After visual quality-control, 172 baseline and 117 follow-up scans were included. Image processing was performed with ExploreASL12. Mean regional CBF 

was assessed in the total gray matter (GM) and in the same four amyloid-based ROIs. Additionally, we investigated the mean CBF in the vascular territories 13 (Figure 1) that overlapped 

with these ROIs (Figure 2).   

All statistical analyses were performed in R 3.3.1 using generalized estimating equations (GEEs). Cross-sectionally, we first examined the relation between Centiloid and CBF values 

in early amyloid accumulation regions5,6. Second, we examined the association between the amyloid ROIs with the spatially overlapping vascular territories CBF (Figure 2), including 

the association between global GM CBF values and global Centiloid. Analyses were adjusted for age, sex, and twin dependency. For both analyses, we studied the interaction between 

Centiloid and Framingham scores on CBF in the same regions. In the longitudinal analysis (n=117), we examined whether global and regional amyloid burden at baseline predicts 

global GM CBF at follow-up. 

Results: We found significant associations between regional Centiloid and CBF in corresponding regions from the LEAP atlas (Table 1). A significant interaction between amyloid 

and Framingham on CBF was found only for the Lingual Gyrus ROI (p=0.003). Both global and regional associations were found between global Centiloid with Framingham scores 

and CBF values for all of the vascular territories except for the MCA proximal region (Table 2). No significant association between global Centiloid at baseline and total CBF changes 

was found. Regionally, linear models detected no significant predictors, however, using quadratic models, Precuneus Centiloid significantly predicted total CBF changes over time (p 

= 0.0285, ΔQIC = 187) (Figure 3). 

Discussion: We found regional amyloid burden in AD signature regions to be associated with altered CBF in cognitively intact individuals. Interestingly, the interaction between 

amyloid Centiloid values and Framingham Risk scores was associated with vascular territory CBF values, suggesting the importance of vascular risk factors when studying CBF in the 

context of cognitive decline. The missing association between the Early Frontal Centiloid region and MCA proximal territory could be explained by the susceptibility artifact in the 

orbitofrontal cortex in the 2D EPI ASL acquisition used. Unexpectedly, we observed an increase in vascular territories CBF with increasing Centiloid; which could be explained by 

compensatory mechanisms at the beginning of amyloid accumulation14. From the longitudinal assessment, we found an association between total CBF change over time and Precuneus 

Centiloid values at baseline, which is one of the first AD-related regions for amyloid accumulation and atrophy15. However, these results might be driven by outliers as we have only 

had a few participants with high amyloid load in this CU cohort. This work demonstrates the potential value of the joint analysis of regional CBF, cardiovascular risk scores, and 

amyloid burden. Future work will include the investigation of their joint impact on cognitive performance. 

References: 1. Atterms et al., 2014, BMC Med. ; 2. Bangen et al., 2014 Front. Aging Neurosci. ; 3. Wieranga et al., 2014 ; 4. Butterfield, 2019, Nat Rev Neurosci. ; 5. Mattson et al., 

2014 Brain. ; 6. Collij et al., 2020 Neurology ; 7. Konijnenberg et al., 2018 Alzheimers. Res. Ther ; 8. Wilson et al., 1998, Circulation ; 9. Klunk et al., 2015. Alzheimers. Dement ; 10. 

Wolz et al., 2010 Neuroimage ; 11. Lopes Alves et al., 2020, Alzheimers. Dement ;  12. Mutsaerts et al., 2020, Neuroimage ; 13. Mutsaerts et al., 2015, PLoS One  ; 14. Hahn et al., 

2019, Cereb. Cortex ; 15. Thomas et al., 2019, AJNR Am. J. Neuroradiol.
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Fig. 1: LEAP atlas (top) and Vascular Territories atlas (bottom). ACA: Anterior Cerebral 

Artery; MCA: Middle Cerebral Artery: PCA: Posterior Cerebral Artery.

 

Fig. 2: Centiloid regions (columns 1-3) and spatially matching vascular territories (columns 4-

6): A) Precuneus (orange) and ACA distal (red) B) Orbital frontal (blue) and MCA proximal 

(light blue); C) Superior Frontal Gyrus (pink) and ACA intermediate (red); D) Lingual Gyrus 

(green) and PCA intermediate (light green).  

Table 1: GEE results are shown for the association between regional amyloid values at baseline 

and CBF — with or without correction for Framingham risk factors. x indicates interaction 

effect. * indicates significance (p<0.05) and ** significance after Bonferroni correction 

(p<0.05/8).  There were no independent associations between Framingham and CBF (p>0.05). 

 

 

Table 2: GEE results are shown for the association between regional amyloid values at baseline 

and CBF in the vascular territory regions — with or without correction for Framingham risk 

factors. x indicates interaction effect. * indicates significance (p<0.05) and ** significance after 

Bonferroni correction (p<0.05/8).   

 

Fig.3. Quadratic model adjusted for the correlation between Precuneus Centiloid values at 

baseline and Total CBF change over time.
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Synopsis: Cerebral clearance is most active during sleep, therefore reduced sleep quality might induce impaired clearance function. Interstitial fluid (ISF) washes waste products from 

in-between cells through the parenchyma and its volume is found to be regulated by the sleep-wake cycle. Assessment of the ISF-fraction through IVIM can be a potential, non-

invasive method to determine sleep-related variations in ISF, without contamination of parenchymal or microvascular diffusion. The current exploratory study investigates the 

potential of the IVIM-derived ISF-fraction to assess ISF-volume changes in relation to sleep by examining whether these changes are driven by actual hours of sleep or self-reported 

sleep quality.  

 

Introduction 

Recently, spectral decomposition of the intravoxel incoherent motion (IVIM) signal revealed an additional, intermediate, component between the two traditional components 

(microvascular and parenchymal diffusion)1. The fraction of this component (fint) is argued to reflect interstitial fluid (ISF) within the parenchyma and was suggested to relate to 

cerebral clearance.1,2 The ISF plays a crucial part in the cerebral clearance system, as it washes the waste products through the parenchyma.3 

Cerebral clearance is most active during sleep,4,5 therefore reductions in sleep quality might induce impaired clearance function.6 ISF expands during sleep, which facilitates the 

clearance of waste products from in-between the cells, while the ISF-volume reduces again in awake states.6,7 Previous diffusion studies have observed alterations in general 

diffusivity measures dependent on sleeping patterns and support the role of underlying ISF-volume on altered clearance.8-10 Decreased diffusivity measures (i.e., axial, radial, and 

mean diffusivity) were found after sleep deprivation8,9 and a lower apparent diffusion coefficient was found in awake states as compared to sleep.10 However, previous studies have 

neither examined the effects of long-term subjective sleep deprivation on cerebral diffusivity, nor have they investigated alterations in ISF-volume by specifically isolating the ISF 

diffusion signal from parenchymal and microvascular diffusivity. 

Therefore, the current exploratory study investigates the potential of fint as a marker to non-invasively assess ISF-volume changes in relation to sleep by examining whether these 

changes are associated to the actual hours of sleep or self-reported sleep quality.  

 

Methods 

MRI acquisition: Twenty healthy elderly subjects underwent high-field MRI (7T research system, Siemens Healthcare, Erlangen, Germany) using a 32-element channel phased-array 

head coil. Diffusion MR images (acquired with a prototype sequence) and anatomical T1-weighted were acquired for all subjects (Table 2).   

Image analysis: Diffusion Trace images were calculated and corrected for susceptibility induced distortions (topup, FSL version 6.0.1),11 motion and eddy currents (ExploreDTI 

version 4.8.4).12 Hereafter, images were smoothed with a 3mm FWHM Gaussian kernel (fslmaths, FSL).13  

Anatomical T1-weighted images were automatically segmented into gray matter (GM) and white matter (WM) using Freesurfer (version 5.1.0). Resulting masks were coregistered to 

IVIM image space (FLIRT, FSL).14 

Spectral analysis using non-negative least squares (NNLS) was conducted to analyse the IVIM data in a voxel-wise manner.1 The intermediate diffusion component was identified as 

1.5*10-3<Diffusivity<4.0*10-3 mm2/s (Figure 1), and the contribution of the intermediate component to the total signal was determined by quantifying the ISF-volume fraction (fint), 

while correcting for T1- and T2-relaxation effects.1 To solve the NNLS, 80 basis functions were used, logarithmically spaced between .1*10-3 and 200*10-3mm2/s. Additionally, a 

regularisation smoothing constraint was added, allowing a misfit between 2% and 2.5%. The median value of fint was extracted for WM and GM.   

  

Sleep questionnaire: Sleep quality over the last month was assessed by using the Pittsburgh Sleep Quality Index (PSQI).15 In addition to the clinically used total PSQI (sum of all 7 

components), two specific PSQI components were examined: Subjective sleep quality (PSQI 1) and Sleep duration (PSQI 3).   

  

Statistics: Pearson correlations were computed between the PSQI scores and fint for WM and GM (IBM SPSS statistics version 25). To check for potential confounding influences, 

the analysis was repeated while adjusting for age and time of MRI-acquisition (in minutes after the previous midnight) using partial correlations.  

 

Results  

The sample characteristics and descriptive statistics of the PSQI and IVIM measures are summarized in Table 1.   

A significant negative association is found between PSQI 1 (subjective sleep quality) and WM fint (R=-.454, p=.045), where a worse reported sleep quality relates to lower WM fint 

(Figure 2) (Table 3). After adjusting for age and time of MRI-acquisition, this association remains to show a trend towards significance (R=-.437, p=.061). No other significant 

associations were found (Table 3).   

 

Discussion 

The current explorative study identified a lower IVIM-derived proxy of ISF-volume (fint) in the WM of subjects who reported a subjective feeling of long-term sleep deprivation. This 

association was effectively independent of age and the time of MRI-acquisition. A reduction in ISF-volume leaves less space for waste products to be cleared from in-between the 

cells. Thereby, the findings of this study are supportive of an association between sleep function and cerebral clearance.  

Our findings are in line with previous studies that show reduced general diffusivity measures after sleep deprivation.8,9 However, by isolating ISF from contamination of blood and 

parenchymal diffusivity, the current study was able to specifically assess ISF-volume alterations in relation to sleep deprivation measurements. 

Interestingly, only the self-reported subjective sleep quality and not the actual hours of sleep, was found to be associated to the ISF-fraction. In contrast to the hours of sleep, the sleep 

quality represents sleep disturbances while accounting for intra-individual variations in need for sleep. The need to correct for intra-individual differences in sleep requirements is 

thereby further highlighted.16-18 Furthermore, the total PSQI score does not seem sensitive enough to pick up intra-individual sleep variation in relation to ISF-volume. 

Our findings highlight the potential of the IVIM-derived ISF-fraction as a non-invasive method to measure ISF alterations related to sleep disturbances. More data is currently being 

acquired, which will allow for more detailed investigation of the effects of potential confounding factors on the association between self-reported sleep and the ISF-volume. 
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Table 2. This table summarizes the acquisition parameters of the sequences used. 
Abbreviations: IVIM, intravoxel incoherent motion; TR, repetition time; TE, echo time; TI, 
inversion time; EPI, echo planar imaging. 

 

Table 3. Pearson correlations of fint with the subscales (PSQI 1 and PSQI 3) 

and total score (sum of all 7 PSQI components) of the PSQI.  
Abbreviations: fint = interstitial fluid fraction, PSQI = Pittsburgh Sleep Quality Index, 
R = Pearson correlation.  

* p < 0.05.  

 

Table 1. This table displays the sample characteristics and descriptive statistics of the 

PSQI and IVIM measures. Mean (standard deviation) are reported unless stated otherwise.  

Abbreviations: IVIM = intravoxel incoherent motion, Dint = interstitial fluid diffusion, fint = interstitial 

fluid fraction, PSQI = Pittsburgh Sleep Quality Index, BMI = Body mass index. 

 

Figure 1. A simulated example of a diffusion spectrum of a voxel in the white matter is shown. The 

spectrum is divided into the three microstructural compartments (i.e., parenchymal, intermediate and 

microvascular compartment), showing the intermediate diffusion component in the middle.  
purple = parenchymal diffusion range, blue = intermediate diffusion range, pink = microvascular pseudodiffusion 

range. 

 

Figure 2. Scatterplot of fint from the white 

matter with PSQI component 1 scores 

(subjective sleep quality during the past 

month) (A). A least-square linear regression 

line is added for visualization. Arrows point 

to the participants used to present 

exemplary fint  maps of the whole 

parenchyma overlaid on the anatomical T1-

weighted image in native IVIM space, i.e., a 

subject with a low PSQI 1 score and high 

white matter fint (B) and a subject with a 

high PSQI 1 score and low white 

matter fint (C). 

 
Abbreviations: fint = interstitial fluid fraction, 

PSQI = Pittsburgh Sleep Quality Index (PSQI). 
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Synopsis: We assessed blood-flow velocity measurements on 7T MRI as a potential disease marker for cerebral small vessel disease (SVD). Two-dimensional phase-contrast velocity 

measurements were performed in perforating arteries of the basal ganglia (BG) and white matter of the centrum semiovale (CSO) in patients with sporadic SVD and age- and sex-

matched controls. Pulsatility index (PI) was significantly higher in the BG, in patients (0.45 [0.41–0.49] vs. 0.36 [0.30–0.41] in controls) (p=0.02). In the CSO, similar number of 

vessels, mean velocity, and PI were observed between patients and controls. BG pulsatility could be a potential marker for SVD. 

Introduction: Cerebral small vessel diseases (SVDs) account for most hemorrhagic strokes, a quarter of the ischemic strokes and approximately 45% of dementia cases, alone or 

together with other neurodegenerative disorders1. In 70% of the people over 65, manifestations of SVDs can be found on brain MRIs2. Despite the large health burden of SVDs, there 

is still no treatment for SVDs with a proven efficacy due to the limited understanding of the mechanisms behind SVDs. 

Current biomarkers of SVDs such as visible MRI manifestations (i.e. lacunes, white matter hyperintensities, enlarged perivascular spaces, microbleeds), microstructural changes to 

white matter measured with diffusion tensor imaging, or blood-based biomarkers are primarily reflective of irreversible SVDs-related damage to parenchymal tissue. SVDs impact 

small vessel function of pial and parenchymal arteries as observed in animal models3. New MRI techniques at 7T MRI allow for measuring the small vessel function in humans directly 

at the small vessels themselves4. These measures have potential as biomarkers for SVDs to give more insight in the disease mechanisms.  

The ZOOM@SVDs5 study was a prospective observational cohort study part of the SVDs@target collaborative program. One of the aims of this study was to assess which aspects of 

small vessel function measured at 7T MRI are affected in patients with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) 

and in patients with a sporadic form of SVD. Here we present the first results of small vessel blood-flow velocity and pulsatility measurements in patients with sporadic SVD and 

matched controls. 

Methods: An overview of the ZOOM@SVDs study design has been published5. 46 patients with sporadic SVD and 22 matched healthy controls had successful 7T MRI brain scans. 

Subjects were scanned on a Philips 7T MRI with a 32-channel head coil. The blood-flow velocity measurements were performed in the small perforating arteries at the level of the 

centrum semiovale (CSO) and the basal ganglia (BG) using a two-dimensional phase-contrast (2D-PC) MRI acquisition (Figure 1). The following scan parameters were used: field of 

view CSO: 230x230 mm2, BG: 170x170 mm2; reconstructed spatial resolution CSO/BG: 0.2x0.2x2.0 mm3; TR/TE CSO: 29/16 ms, BG: 28/15 ms; velocity encoding CSO: 4 cm/s, BG: 

20 cm/s; acquired temporal resolution CSO/BG: 112 ms; 13 reconstructed heart phases, scan duration: 5 minutes for a heart rate of 60 bpm. 

The 2D-PC images were analyzed to assess the cerebral perforating artery density (Ndensity) (number of perforating arteries/cm2), mean blood-flow velocity (Vmean), and pulsatility index 

(PI). The PI was defined as 𝑣𝑃𝐼 =  
𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛

𝑉𝑚𝑒𝑎𝑛
, where Vmax, Vmin, and Vmean, are the maximum, minimum, and mean of the normalized and averaged velocity trace over the cardiac cycle 

(Figure 1). Analysis of the 2D-PC images was performed as described previously6–8. The region of interest (ROI) in the CSO was segmented automatically for the total white matter 

(TWM) and normal appearing white matter (NAWM) (Figure 2). ROIs in the BG were drawn manually. All statistical analyses were corrected for age and comparison of PI was 

corrected for Vmean. 

Results: Controls were matched with patients based on age and sex. Mean age of the patients and controls were 63 and 65 years respectively. All controls had successful CSO and BG 

scans. 46 (100%) and 44 (96%) patients had successful CSO and BG scans respectively. In the BG we found similar Ndensity (mean difference: 0.01 vessels/cm2; p=0.69), lower Vmean 

(mean difference: 0.15 cm/s; p=0.55), and significantly higher PI (mean difference: 0.09; p=0.02), in patients when compared to controls (Table 1). In the CSO we found similar Ndensity, 

Vmean, and PI in the NAWM and TWM between patients and controls (Table 2).  

Discussion: Patients with sporadic SVD had a higher velocity pulsatility in the BG when compared to healthy matched controls. No differences in the CSO outcome measures between 

controls and patients were found. The increased velocity pulsatility index we found in the BG in sporadic SVD is also in accordance with previous results in lacunar stroke patients9 

and with other findings of an increase pulsatility index in the internal carotid or middle cerebral arteries in cerebrovascular diseases10,11. The measurements in sporadic SVD are very 

comparable to the CADASIL patients in the ZOOM@SVDs cohort12. It is known that SVDs can manifest in small vessels as loss of smooth muscle cells, fibrinoid necrosis, narrowing 

of the lumen, and thickening of the vessel wall13, which could be parts of the mechanism behind the increased velocity pulsatility index. With these results we signify the potential for 

2D-PC blood-flow velocity measurements to be a direct signature of the disease in the small perforating arteries. These disease markers could also potentially be associated with disease 

burden or progression. The strength of these markers is that they are a direct reflection of small vessel function rather than small vessel damage.  

Conclusion: The ZOOM@SVDs study showed the potential for 7T MRI 2D-PC blood-flow velocity measurements as small vessel function markers in monogenic and sporadic forms 

of SVD. The strength of these markers is that they are derived directly from the small vessels themselves, which could help contribute to unraveling the mechanisms behind SVDs. 
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Figure 1: A) Two-dimensional phase contrast (2D-PC) slice planning at the level of the centrum semiovale (CSO) and basal ganglia (BG) on a 3D T1-w image. B) Magnitude image of a 2D-PC image of the 
CSO. Perforators are marked in red. C) Magnitude image of a 2D-PC image of the BG. Perforators are marked in red. D) Average velocity trace over the cardiac cycle of the perforating arteries in the CSO. 

E) Average velocity trace over the cardiac cycle of the perforating arteries in the BG. 

 

Figure 2: A) Region of interest (ROI) of the white matter automatically segmented in the two-dimensional phase contrast (2D-PC) slice at the level of the centrum semiovale (CSO). B) ROI manually drawn 

in the 2D-PC slice at the level of the basal ganglia (BG). 

 

Table 1: Blood-flow velocity measurements of the perforating arteries in the basal ganglia (BG). Ndensity = density of detected perforators given in amount detected/cm2; Vmean = mean blood-flow velocity of 

the perforating arteries given in cm/s; CI = confidence interval. Values are given in mean with 95% CI. A p-value < 0.05 indicates statistical significance. 

Basal Ganglia Controls (n = 22) Patients (n = 44) p-value 

N
density

 (mean #/cm2 [95% CI]) 0.92 [0.80 – 1.04] 0.91 [0.83 – 0.99] 0.69 

V
mean 

(cm/s [95% CI]) 3.87 [3.59 – 4.16] 3.72 [3.52 – 3.93] 0.55 

Pulsatility Index (mean [95% CI]) 0.36 [0.30 – 0.41] 0.45 [0.41 – 0.49] 0.02 

Table 2: Blood-flow velocity measurements of the perforating arteries in the semioval center (CSO) for the total white matter (Top) and the normal appearing white matter (Bottom). Ndensity = density of 

detected perforators given in amount detected/cm2; Vmean = mean blood-flow velocity of the perforating arteries given in cm/s; CI = confidence interval. Values are given in mean with 95% CI. A p-value < 

0.05 indicates statistical significance. 

Centrum semiovale Total white matter Controls (n = 22) Patients (n = 46) P-value 

N
density

 (mean #/cm2 [95% CI]) 2.28 [1.90 – 2.65] 2.23 [1.90 – 2.56] 0.91 

V
mean 

(mean cm/s [95% CI]) 0.64 [0.60 – 0.68] 0.65 [0.62 – 0.69] 0.70 

Pulsatility Index (mean [95% CI]) 0.32 [0.27 – 0.37] 0.35 [0.31 – 0.38] 0.39 

Centrum semiovale Normal appearing 

white matter 

Controls (n = 22) Patients (n = 46) P-value 

N
density

 (mean #/cm2 [95% CI]) 2.27 [1.90 – 2.64] 2.23 [1.90 – 2.56] 0.91 

V
mean 

(cm/s [95% CI]) 0.64 [0.60 – 0.68] 0.66 [0.62 – 0.69] 0.65 

Pulsatility Index (mean [95% CI]) 0.32 [0.27 – 0.37] 0.36 [0.32 – 0.39] 0.33 
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Synopsis: Due to its high specificity, VASO plays a major role in laminar fMRI. To mitigate its lower sensitivity compared to GE-BOLD researchers mostly employ block-designs to increase SNR. Here, 
we developed a VASO sequence with a short TR (895ms volume acquisition) and showed that it provides the means to capture layer-specific haemodynamic responses with high spatio-temporal resolution. 

During event-related stimulation, we show reliable responses in visual and somatosensory cortices. Furthermore, the short TR and high specificity of VASO enabled us to show differences in laminar 

reactivity and onset times, thus demonstrating the high value of event-related designs using CBV-based fMRI. 

Purpose: FMRI at ultra high resolutions lends the possibility to investigate the human brain at the mesoscopic scale (Dumoulin, 2016). A key feature at this level is the organization of cortical layers. 
While the commonly used GE-BOLD is biased towards the cortical surface, non-BOLD contrasts like Vascular Space Occupancy (VASO) have a higher specificity to the underlying microvasculature 

(Huber, 2017). However, this comes at the cost of lower sensitivity. Nevertheless, researchers have successfully used experimental conditions with long blocks of stimulation (~30s, e.g. Huber, 2017, but 

also see Persichetti, 2020). The possibility to employ short paced stimulation designs would widen the range of neuroscientific insights to be gained.The goal of the current study was: 

• To develop and test a VASO sequence protocol with a short TR which provides the means to capture layer-specific haemodynamic responses with high temporal resolution (895 ms volume 

acquisition Trs). 

• To characterise the sub-millimeter detection sensitivity of block and event-wise stimulation. 

• To investigate the generalizability of different stimulus modalities (vision and somatosensation). 

Methods: Data-acquisition: 4 participants underwent scanning using a ‘classical’ MAGNETOM 7T scanner (Siemens Healthineers, Erlangen, Germany), equipped with a 32-channel head coil at 
Scannexus (Maastricht, The Netherlands). All functional scans were performed with slice-selective slab-inversion VASO (SS-SI VASO, Huber, 2014) and a nominal resolution of 0.9mm isotropic (16 

slices TI1/TI2/TR/TE = 50/825/1720/18 ms, partial fourier factor = 6/8, flip angle = 26°, FLASH GRAPPA 3, bandwidth =1266Hz/Px, FoV = 133 mm, Fig1 B). Slice position and orientation were chosen 

individually for each subject and covered the calcarine sulci and as much of the right postcentral gyrus as possible (Fig1 A). Finally, whole brain anatomical images (0.7mm isotropic) were acquired using 

MP2RAGE (Marques. 2010). 

Paradigm: During block-stimulation runs (2 runs of ~12 minutes), flickering checkerboards were presented at 16Hz and, concurrently, 5 digit-tips (left hand) were stimulated (30s on-off block design) by 

means of a piezoelectric vibrotactile stimulator (mini PTS system, Dancer Design, UK). During subsequent event-stimulation runs (2-4 runs of ~12 minutes), we presented the same visio-tactile stimuli for 

2s per trial with inter-trial intervals (ITIs) between 3 and 10s chosen from a uniform distribution, resulting in 84 trials per run. These highly irregular ITIs were chosen to accurately capture the 

haemodynamic responses of BOLD and VASO. The stimulation pattern was generated once and then used for all runs in order to allow averaging. 

Data-processing: Motion- and BOLD-correction was applied using ants-Registration and LAYNII, respectively. GLM-analyses were performed in FSL (contrast: stimulation vs rest), ROIs were manually 

drawn in FSLeyes and layering was performed on spatially upsampled data (factor 5 in-plane) using LAYNII (Huber, 2021). Finally, the ROIs were used to generate event-related averages (ERAs) by 

extracting timecourses from 4 TRs before and 8 TRs after stimulation and averaging them using custom python-scripts. For analysis code, see: https://bit.ly/3qdZCBG. 

Results and Discussion: Here, we discuss the results in visual cortices. For blocks, z-maps show clear responses in all participants (Fig2 A). ERAs for both VASO and BOLD show the expected sustained 
response which is stronger for BOLD than for VASO (Fig2 B). Z-scores increase strongly towards the cortical surface for BOLD but less for VASO (Fig2 C). For unimodal responses to long stimuli, a 

peak in middle layers would be expected for VASO (under the assumption that the nulled blood has been drained between volume TRs). Possibly, the signal increase we see towards the surface for VASO 

and BOLD reflects the multimodal input from tactile stimulation. When averaging multiple runs, we also obtained reliable z-maps for event-related stimuli (Fig3 A) and ERAs that follow the expected 
temporal pattern, with clear peaks, initial dips and undershoots (Fig3 B). Importantly, the general response pattern stabilizes after averaging about 20 event-trials (Fig4 B), showing its suitability for the use 

in neuroscientifically valuable designs due to high efficiency. Still, the event-related results show a reliable, but lower detection sensitivity compared to the block design data (as seen by the less 
pronounced maps in Fig3 A vs. Fig2 A, lower signal change Fig3 B vs. Fig2 B and lower z-scores in Fig4 C). Importantly, Fig3 D shows earlier responses for middle and deep layers in VASO, which 

demonstrates its high value for depth-dependent analyses. The slow venous hemodynamic filter in BOLD, however, cannot capture these differences in our data. 

Similar results were obtained in the somatosensory cortex (S1, see Fig5). Note, that here we found higher z-scores for event-wise stimulation in VASO (Fig5 D). 

Conclusion and Summary: Here, we characterize the applicability of SS-SI VASO with event-related stimulation. With a short 895 ms volume acquisition TRs, we were able to capture the haemodynamic 

response for VASO and BOLD within a few average trials. Furthermore, the short TR and high specificity of VASO enabled us to show subtle laminar-dependent timing differences of neural processing 
and vascular reactivity features. Here, deep and middle layers showed the earliest responses in VASO but not BOLD. We believe that this shows the added value of employing shorter stimulation periods 

using VASO, which greatly increases the range of possible design choices for CBV-based laminar fMRI. 
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Fig1. Experiment Information. A) Slab coverage registered to and 

overlaid on whole-brain MP2RAGE and anatomical landmarks guiding 

slab-selection B) Sequence diagram C) Schematic stimulation paradigm 

for blocks and event-related stimulation. 

 

Fig2. Block stimulation results and ROIs. A) BOLD Zmap and resulting 

layer-ROIs flipping back and forth based on block stimulation for a 

representative participant. B) Group-level event-related averages showing 

the BOLD and VASO signal change across all layers in response stimuli 

with a duration of 30s. C) Group-level layer profiles (z-scores) for BOLD 

and VASO. Shaded area around graphs: 95% confidence interval across 

trials. 

 

 

Fig3. Event-wise stimulation results. A) VASO Zmap of 4 averaged runs 

and layer ROI (based on block simulation) flipping back and forth for a 

representative participant. B) Group-level ERA showing the BOLD and 

VASO signal change across layers in response stimuli with a duration of 

2s. C) Group-level layer profiles (z-scores) for BOLD and VASO in 

response to event-wise stimulation. D) Layer-effect for response onset for 

VASO but not for BOLD. Shaded area around graphs: 95% confidence 

interval across trials. 

 

 

Fig4. Incremental averaging of trials and z-score comparison. Animations 

showing the incremental convergence on the mean signal change for one 
run of a representative participant. Each frame depicts the ERA of a given 

number of trials for block- A) and event-wise B) stimulation in darker hue 

and the run average in lighter hue. C) Comparison between z-scores for 

block- and event-wise stimulation separately for BOLD and VASO. 

 

Fig5. Tactile stimulation results. A) BOLD Zmap and layer-ROI in S1 

based on block stimulation for a representative participant. B) Same as 

Fig2B but for ROI in S1 C) Same as Fig3B but for ROI in S1 D) 
Comparison between group layer profiles in S1 (z-scores) in response to 

block- and event-wise stimulation for BOLD and VASO E) Trend 

towards layer-effect (within error bars) in S1 for response onset for 
VASO but not for BOLD. Shaded area around graphs: 95% confidence 

interval across trials. 
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Synopsis  
Huntington’s disease (HD) is a neurodegenerative disorder that affects motor and cognitive abilities. In this study, we present the outcome of a longitudinal multi-
shell DWI investigation of the zQ175 HD mouse model using the diffusion tensor, diffusion kurtosis, and fixel-based analysis. This study reveals that, 
microstructural deficits are observed at an early stage of disease and mainly affect the diffusion tensor in corpus callosum and kurtosis in caudate putamen and 
grey matter, while fiber cross-section is reduced in major fiber bundles. At a late stage, many white matter fiber bundles show deficits that are indicative of 
differential myelination and potential axonal pathology.    

Summary of main findings  

Fixel-based analysis and diffusion kurtosis analysis reveal white and gray matter pathology at 6 and 11 months in the zQ175 Huntington’s disease mouse model.  

Introduction 
Huntington’s disease is a progressive genetic neurological disease that affects the motor and cognitive abilities.1 Biomarkers are crucial to distinguish different 
stages of the disease and to test potential HD treatments. Diffusion weighted imaging (DWI) and the commonly applied diffusion tensor imaging (DTI) analysis 
have already revealed structural deficits in human HD patients and animal models compared to healthy controls.2 Previously, we have demonstrated the 
presence of structural deficits in the zQ175 mouse model in a moderate stage of Huntington’s disease using DWI. In this longitudinal study, we investigated (1) at 
what disease stages the structural changes occur in the brain of zQ175 HD mice and (2) how these deficits change between disease stages. 

Methods 
29 HD mice (zQ175+/-) and 29 healthy control littermates (zQ175-/-) were investigated at 3, 6 and 11 months of age (premanifest, disease onset and moderate 
manifest stage respectively) using multi-shell diffusion MRI. Animals were anesthetized with 1-2% isoflurane in a mixture of N2 and O2 during handling and image 
acquisition. Body temperature and breathing rate were monitored. Diffusion imaging was performed on a 7T Pharmascan 70/16 USR horizontal MR system 
(Bruker, Germany) using a multi-shell (b= 700, 1200 and 2800 s/mm2; δ= 4ms, Δ= 12ms) two-shot spin echo DW-EPI sequence with 60 unique diffusion directions 
across each shell (TE/TR= 23/7000ms). Per scan, 3 b0 images were acquired. Each scan contained 16 horizontal slices (500µm slice thickness) with an in-plane 
resolution of (200x200)µm2 and a matrix size of [108x100]. Images were pre-processed using Gibbs ringing correction and denoising (MRtrix3.0),4 motion- and 
distortion correction (FSL6.0), and bias-field correction (ANTs).5 Voxel-level modelling was performed using multi-tissue constrained spherical deconvolution6 in 
MRtrix3.0. A study-specific population template of the white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) compartment was built across all ages 
using iterative non-linear registration in ANTs. Data was statistically compared in Mrtrix3.0 using a fixel-wise two sample t-test. A similar processing pipeline was 
used before fitting the diffusion data to the DKI model, from which both diffusion tensor and kurtosis metrics were extracted. A voxel-wise two sample t-test was 
performed on the diffusion/kurtosis maps using FSL6.0 randomise.7 Mean values for each metric were extracted for Huntington vulnerable regions-of-interest 
(ROI) and statistically compared using a linear mixed model to test for age, genotype, and interaction effects, followed by FDR correction. 

Results  
Voxel and fixel-wise analysis demonstrate widespread significant differences between zQ175-/- (WT) and zQ175+/- (HD) mice at 6 and 11 months of age (Fig.1). 
White matter structures have lower fractional anisotropy (FA) and axial diffusivity (AD), and increased RD at 11 months of age in zQ175+/- mice. Gray matter 
structures demonstrate widespread increased mean kurtosis (MK) and axial kurtosis (AK) at 6 months, while at 11 months MK and AK are decreased.  In white 
matter fiber tracts, fiber bundle cross-section is lower in zQ175+/- mice at 6 and 11 months of age.  

Region-of-interest analysis of the diffusion tensor and kurtosis metrics in corpus callosum (CC), caudate putamen (CPu) and motor cortex which are relevant 
regions in HD pathology, shows that in zQ175+/- mice FA is lower, and RD increased in the CC at 6 and 11 months. No genotype differences except increases of 
mean kurtosis (MK) are found for the CPu. However, in the motor cortex MD and AD significantly decreased at 6 and 11 months (Fig.2-3), and FA significantly 
decreased at 11 months. The Tract-of-interest analysis reveals that FD increased and FC decreased in CPu at 3 months of age (Fig.4), which is earlier than the 
diffusion tensor and kurtosis metrics. FD and FC significantly decreased in CC, and FC significantly decreased in CPu at 6 and 11 months. FC significantly decreased 
in the motor cortex at 6 months.  

Discussion & Conclusion  
This longitudinal characterization of the zQ175+/- HD mouse model reveals that most structural deficits are present at 6 months of age when the animals exhibit 
their first motor deficits (Fig.5). At this stage, the structural phenotypes are best captured by decrease of FA and increase of RD in CC, increase of MK and 
decrease of FC in CPu, and decrease of FD and/or FC in major fiber bundles. At the moderate manifest stage (11 months), pathology has a more widespread effect 
on white matter fiber bundles, displayed as a decrease in FA and increase in RD, suggesting differential myelination. At the moderate manifest stage, the increase 
in the kurtosis parameters is no longer present, while FD, FC and FDC remain decreased, which suggests that the microstructural complexity and axon bundle 
density and cross-section are reduced. The non-linear changes in FA and kurtosis metrics are counterintuitive, however, such changes have been reported in fMRI 
in HD.8,9  DTI studies in Parkinson’s disease,  which is also a neurodegenerative motor disorder, suggest potential (early) compensatory  mechanisms could be 
involved.10 Immunohistochemistry is planned to investigate what is causing these microstructural deficits.  
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Figure 1: Voxel-wise diffusion tensor and kurtosis analysis and fixel-based analysis reveal structural deficits in different stages of HD progression. Significant 
voxels (PTFCE-FWE < 0.05 for diffusion tensor and kurtosis) and fixels (PCFE-FWE <0.05) are overlaid on a T2-weighted template in horizontal view at -2.68mm Bregma. 
Hot T-scales and absolute effect scale indicate an increase in zQ175+/- (HD) mice compared to zQ175-/- (WT) animals, while cool scales indicate a significant 
decrease.  

 
 

Figure 2: ROI-based analysis of diffusion tensor data in HD relevant regions. Analysis is performed 
separately for fractional anisotropy (FA), radial diffusivity (RD, 10-3 mm2/s), mean diffusivity (MD, 
10-3 mm2/s), and axial diffusivity (AD, 10-3 mm2/s). zQ175-/- (WT) mice are shown in dark gray and 
zQ175+/- (HD) animals are shown in light grey. Asterisks indicate significant post-hoc differences 
(P<0.05) between genotypes per timepoint. Dotted lines labelled a indicate significant main effects 
of age (P<0.05), regardless of genotype. Error bars indicate the SEM. 

 

 

 

 

 

 

 

 

Figure 3: ROI-based analysis of diffusion kurtosis 
data in HD relevant regions. Analysis is performed 
separately for mean kurtosis (MK), radial kurtosis 
(RK) and axial kurtosis (AK). zQ175-/- (WT) mice are 
shown in dark gray and zQ175+/- (HD) animals are 
shown in light grey. Asterisks indicate significant 
post-hoc differences (P<0.05) between genotypes 
per timepoint. Dashed lines indicate a significant 
(P<0.05) main effect of age (a) or genotype (g). 
Error bars indicate the SEM. 

 
Figure 4: Tract-based comparison of fixel-based 
data in five HD relevant regions. Analysis is 
performed separately for fiber density (FD), fiber 
cross-section (FC) and fiber density x cross-section 
(FDC). zQ175-/- (WT) mice are shown in dark gray and 
zQ175+/- (HD) animals are shown in light grey. 
Asterisks indicate significant post-hoc differences 
(P<0.05) between genotypes per timepoint. Dashed 
lines indicate a significant (P<0.05) main effect of 
age (a) or genotype (g). Error bars indicate the SEM.  

 

Figure 5: Schematic overview of pathological micro-and microstructural features in HD 
relevant regions. Comparisons are summarized from figures 2 – 4. Left side: changes in diffusion 
parameters in disease onset. Right side: changes in diffusion parameters in the moderate 
manifest stage. Significantly different parameters are paired with arrows indicating an increase 
(green) or decrease (red) for a specific metric. Figure created with BioRender.com. 
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Synopsis: Abnormal cerebral vasculature and consequent diminished cerebrovascular function have been shown to play a role in Huntington’s Disease (HD). 

However, how these impairments reflect on cerebral blood flow (CBF) dynamics and vascular reactivity (CVR) have been poorly understood. Towards this, we 

performed a longitudinal study measuring CBF and CVR, using pCASL, in the zQ175 KI Huntington’s disease (HD) mouse model at pre-manifest (3/4.5 months), 

disease onset (6 months) and manifest (9 months) stage. Our results demonstrate decreased CBF under CO2 challenge at disease onset and decreased CVR in 

manifest HD stage in the zQ175 KI mice compared to age-matched controls. 

 

Introduction: Huntington’s Disease (HD) is an autosomal, dominantly inherited neurodegenerative (ND) disease with an abnormal expansion of the CAG 

(cytosine-adenine-guanine) repeat in the huntingtin gene. Despite the known genetic background, HD pathomechanisms are still not fully understood, limiting the 

possibility of a successful therapy thus far. Brain perfusion, cerebrovascular functional and anatomical integrity have been shown to be compromised in ND 

diseases, such as HD.  More specifically, in manifest HD patients, hypoperfusion is markedly reduced in cortical and basal ganglia brain regions1, whereas recent, 

preliminary findings in pre-symptomatic HD have shown cerebrovascular reactivity (CVR) alterations in subcortical white matter areas2. This raises the potential of 

using vascular-based changes as a biomarker which can allow for probing new therapeutic strategies.  

In order to better characterize perfusion dynamics at different stages of HD and explore the potential of a cerebrovascular biomarker, we used the zQ175 KI 

heterozygous (HET) model which mimics the human HD progression the closest3, with motor deficits starting at 6 months, marked as disease symptom onset4.  

Hence, in our study, we sought to investigate cerebral blood flow (CBF) and CVR changes in the zQ175 HET HD mouse model using pseudo-Continuous Arterial 

Spin Labelling (pCASL) MRI. 

 

Methods: Longitudinal pCASL MRI was performed on a 7T Bruker scanner on two different cohorts of wild-type (WT, n=10) and HET (n=10) zQ175 DN mice in 

different conditions, at 2 separate scan moments: (1) measuring plain perfusion under baseline (66% N2 and 33% O2) at 3, 6 and 9 months, (2) assessing CVR 

(%ΔCBF between baseline and CO2 challenge) via measuring perfusion under baseline (100% O2) and CO2 challenge (90% O2 10% CO2) at 4.5, 6 and 9 months 

of age. Mice were anesthetized with a combination of 0.4% isoflurane and medetomidine (0.05mg/kg s.c. bolus; 0.01mg/kg/h s.c.  infusion). The physiological 

parameters were monitored and kept stable throughout the scan procedure. pCASL scans were acquired 40 min post bolus for 7 minutes during baseline (both 

conditions), 7 minutes under CO2 challenge and 3.5 minutes under recovery (Fig. 1, A). Preceding the pCASL acquisition, a time-of-flight angiogram was acquired 

to define the labelling position, a labelling efficiency map as well as a pCASL scan in order to determine the optimal phase steps for the labelled and control RF 

pulse. The pCASL sequence5 is a spin echo (SE) EPI with labelling time of 3000ms, post label delay (PLD) of 200ms, TR/TE 3450/19.5ms. 120/120/60 label and 

control images are acquired (60/60/30 CBF measures) in baseline/challenge/recovery, for 5 coronal slices with a spatial resolution of 0.26 x 0.39 x 0.8 mm³. 

Absolute CBF was quantified using a T1 map (estimated from an extra slice-selective Inversion Recovery acquisition) and calculated using the single compartment 

model6. Realignment, co-registration to a T1 weighted image, spatial normalization and in-plane smoothing of the label/control images was performed using 

SPM12 software. A study-based template was created in ANTs. ROI- based analysis (RBA) was performed using pre-defined regions of interest (ROI) from which 

mean CBF values per subject were extracted. Two-sample T-tests on the distributions of CBF and CVR data of WT and HET mice were performed with FDR 

correction (p<0.05) in GraphPad Prism 9.2. Explorative voxel-based analysis (VBA) to reveal - at each age - local differences in CBF and CVR between WT and 

HET mice was performed in SPM12 using two-sample t-tests with p<0.01, uncorrected. 

 

Results: At disease symptom onset (6 months), RBA demonstrates a significant lower perfusion in HET mice during 100% O2 baseline condition in the piriform 

cortex, and - more robust - significant lower CBF during CO2 challenge across multiple brain regions (Fig.2.A) with no significant CVR changes present. This is in 

line with the VBA maps that display lower CBF in the same regions and conditions (Fig.2.B). At a manifest disease stage (9 months), the dynamic profiles of brain 

averaged CBF from baseline to CO2 challenge demonstrate a smaller increase in CBF in HET compared to WT mice (Fig.1.B), which is in accordance with the 

RBA where the retrosplenial cortex has lower CBF under CO2 challenge (Fig.3.A). An overall lower CVR is present in HET across different brain areas (Fig.3.A), 

while no CBF changes were detected in 100% O2 baseline conditions. The VBA maps display differences in the same line as the RBA with an overall lower CBF 

and %ΔCBF in HET (Fig.3.B). Even though perfusion measurements under normoxic condition did not show any statistically significant difference between both 

groups at any age, at 9 months, both RBA and VBA analysis showed a trend in higher CBF in several brain regions (Fig.4.A, B). 

 

Discussion and Conclusion: Our main findings demonstrate that, in zQ175 HET mice, at disease symptom onset, there is lower perfusion under CO2 challenge 

and impaired CVR at a manifest stage. The compromised vascular response indicates aberrations at the level of the neurovascular unit, potentially as a consequence 

of mutant huntingtin (mHTT) depositions within blood vessels7 and different cell types, such as smooth muscle cells, astrocytes8 or pericytes. This study highlights 

the relevance of assessing CBF and CVR alterations as a prospective biomarker which can be used for evaluating efficacy of future therapies that aim at lowering 

mHTT or targeting different vascular components. 
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Fig.1: (A) Acquisition scheme for pCASL with CO2 challenge (left) 

and the anatomical position of the 5 coronal slices (right); (B) 

Example of the average CBF across time during baseline (blue 

insert) and CO2 challenge (yellow insert) conditions for both WT 

and HET mice. 

Fig.2: (A) ROI-based analysis at 6 months of age demonstrates under 100% O2 baseline, 

significant lower CBF in Piriform Cortex (Piri) in HET compared to WT mice, while 

under CO2 challenge multiple regions show significant lower CBF in HET; (B) Mean 

CBF maps for both WT and HET under 100% O2 baseline and CO2 challenge and VBA 

statistical maps demonstrating decreased CBF in the same ROIs as (A) in HET in both 

conditions; Two-sample T-test for RBA with p<0.05 (FDR corrected) and VBA 

statistical maps with p<0.01 (uncorrected)  

Fig.3: (A) ROI-based analysis at 9 months of age demonstrates under CO2 challenge, 

significant lower CBF in Retrosplenial Cortex (Rsp) in HET compared to WT mice, while  the 

CVR shows significant lower %ΔCBF in multiple regions in HET; (B) Mean CBF maps for 

both WT and HET under CO2 challenge and CVR and VBA statistical maps demonstrating 

lower CBF and lower CVR in HET in the same ROIs as (A)  ; Two-sample T-test for RBA 

with p<0.05 (FDR corrected) and VBA statistical maps with p<0.01 (uncorrected) 

Fig.4: (A) ROI-based analysis of perfusion under normoxic condition at 9 months of age shows only a trend of 

higher CBF in HET in several regions compared to WT mice; (B) Mean CBF maps for both WT and HET and VBA 

statistical map demonstrating higher CBF in HET compared to WT mice; Two-sample T-test for RBA with p<0.05 

(FDR corrected) and VBA statistical maps with p<0.01 (uncorrected) 
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Synopsis: ASL- and BOLD-MRI have shown great potential in humans and rodents. To date, however, these techniques have not been used to image the canine 

kidney. Therefore, renal blood flow (RBF) and relaxation rate (R2*) were assessed using ASL and BOLD sequences on a beagle at 3T to examine the feasibility of 

both techniques in dogs. Mean RBF was 263.3 ± 39.0 and 277.4 ± 83.3 ml/100g/min in the right and left kidney, respectively. Mean R2* in the right kidney was 22.6 

(range 14.8 - 36.8) s-1. This pilot-study demonstrates the feasibility of ASL- and BOLD-MRI for renal assessment in dogs. 

 

PURPOSE  

Renal disorders are a common problem, in both humans and companion animals. In dogs, the prevalence of chronic kidney disease alone is estimated to be between 0.5 and 7% 1. Previous studies in veterinary 

medicine have urged the need for better methods that can diagnose kidney diseases and elucidate the pathophysiological process 2,3. Current methods to assess canine kidney function (e.g. renal biomarkers 

in blood and urine) are cumbersome and ineffective to detect early kidney damage 3-5.   

Noninvasive magnetic resonance imaging (MRI) methods like arterial spin labeling (ASL) MRI and blood oxygenation level dependent (BOLD) MRI show great potential to address these challenges. Both 
techniques rely on an endogenous contrast to assess renal perfusion and renal tissue oxygenation, respectively 6. Unlike contrast-enhanced ultrasound, which usually takes single plane images, ASL- and 

BOLD-MRI characterize the entire kidney.   

Functional MRI measures in combination with standard anatomical images allow comprehensive characterization of the kidney 6. To date, ASL- and BOLD-MRI have been used in humans and rodents7, but 

has not been used to image the canine kidney. Therefore, the purpose of this study was to determine whether a scan protocol could be composed to visualize renal perfusion and renal tissue oxygenation in 

dogs. 

METHODS  

A healthy Beagle (male, 3 years, 10 kg) was scanned in dorsal recumbency on a Siemens PrismaFit 3T. Before the MRI scan, the dog was deprived of water and food for 5 and 12 hours, respectively. Sedation 

was achieved with administration of butorphanol (0.2 mg/kg, i.v.). Anesthesia was induced with propofol (4 mg/kg, i.v.) and maintained with inhalation of isoflurane (2%) in 100% oxygen. Midazolam (0.2 

mg/kg, i.v.) was supplemented because of superficial breathing. To evaluate perfusion, a multi-TI FAIR QTIPS ASL scan with background suppression was performed (Siemens WIP ASP 1023H), with TIs 
ranging from 250 to 2500ms, Bolus length 1000ms. TR/TE 4500/23.58ms, matrix 64x64, 8 oblique coronal 8mm slices, 272x136mm FOV, 5 measurements per TI. Afterwards a second single-TI FAIR ASL 

was performed with TI=2000ms, 30 measurements. RBF maps are calculated on the scanner. Segmentation and statistics were done with FSL (https://fsl.fmrib.ox.ac.uk/). A multi-echo GRE sequence with 

12 equally spaced echo times (TR 70ms/TEs 4.20:4.20:50.40ms), matrix 96x96, FOV 180x180, four 4mm slices, was used to generate BOLD contrast. A 15 sec breath-hold was induced by applying end-
expiratory positive pressure with the breathing balloon. R2* maps were calculated with T2Processor (https://github.com/gifmi) in Matlab R2019a, and the TLCO (Twelve-Layer Concentric Objects) method8 

was used to calculate mean R2* in the cortex and medulla. 

RESULTS 

In dogs, the kidneys are oriented oblique in two axes in the abdomen, which makes positioning more challenging compared to humans (Fig 1). Fig 2 shows multi-TI FAIR QTIPS perfusion weighted images. 
Based on these data, a TI of 2000 ms was chosen to be optimal. Fig 3 shows the Renal Blood Flow (RBF) map, scaled from 0 to 500 ml/100g/min. Mean (sd) RBF in the R kidney was 263.3(39.0), in the L 

kidney 277.4 (83.3) ml/100g/min. There is a clear distinction in RBF between the cortex and medulla. Fig 4 shows R2*. Mean R2* in twelve concentric layers is from outside to inside; 30.2, 24.0, 20.7, 19.4, 

16.8, 15.2, 14.2, 17.2, 20.9, 23.5, 36.8 and 32.8 s-1 respectively. 

DISCUSSION  

Canine renal perfusion MRI can be performed on a clinical scanner. The ASL voxel size was relatively large in this experiment, so future experiments are needed to see if this can be reduced.   

ASL-MRI derived RBF seems comparable to the true RBF in healthy dogs obtained by an ultrasonic flow-probe 9. Lee et al. (2020) divided the renal arterial flow measured with the ultrasonic flow-probe on 
the renal artery by the renal cortical volume quantified on CT images to calculate the true RBF of the kidney 9. The researchers reported a mean RBF of 246.28 and 273.68 mL/min/100g versus an RBF of 

263.3 and 277.4 mL/min/100g in this study 9. Furthermore, Renal Blood Flow values are in a similar range as human renal perfusion (mean RBF of 229 ± 41 ml/min/100g) 10.  

Using induced breath-hold, BOLD data of good quality can be obtained. Positioning of the imaging plane in a dog is more challenging than in human, because of the orientation of the kidneys in the abdomen. 

As for ASL-MRI, the measurements obtained with BOLD-MRI in dogs were in proximity of to those in humans. In humans, the mean R2* in the outer concentric layers ranged from 23.4 to 27.9 s-1 and from 

30.7 to 31.9 s-1 in the inner concentric layers, while the mean R2* of all layers was 28.1 ± 4.5 s-1, which is in line with the values obtained in this experiment 8.  

CONCLUSION  

In this study, we demonstrate the feasibility of ASL- and BOLD-MRI for quantification of renal perfusion and tissue oxygenation in dogs by a tailored scan protocol. However, further optimalisation for 

better image quality is necessary. RBF values are very similar to reference RBF values obtained with ultrasonic flow probes. Both ASL- and BOLD-MRI may contribute to an improved diagnosis of renal 

diseases and clarification of underlying pathophysiological processes. The canine model can also be used to validate renal ASL in humans.   
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Figure 1. Positioning of the imaging plane for FAIR ASL overlayed on coronal and axial T2 HASTE images. In dogs, the kidneys are oriented oblique in two axes in the abdomen, which makes positioning 

more challenging compared to humans. 

 

Figure 2. Perfusion-Weighted images of the multi-TI experiment. The highest perfusion signal is observed at TI=2000ms. 

 

Figure 3. Renal Blood Flow (RBF) map. Mean cortical perfusion is 263 ml/100g/min in the right kidney, 277 ml/100g/min in the left kidney. 

 

Figure 4. R2* map (A), TLCO layers (B) and R2* in each layer (C). 1 represents the outer layer, 12 the inner layer. Mean R2* ranges from 14.2 to 36.8 s-1, with an average R2* of 22.6 s-1. 
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Synopsis: Developing preclinical imaging techniques in the field of preeclampsia is essential to test the effectiveness of new therapeutic approaches. We applied T2* weighted and three -dimensional 
dynamic contrast-enhanced MRI in a pregnant rat model of reduced uterine perfusion pressure (RUPP) to test their feasibility and ability to detect differences in placental oxygenation and perfusion in 

RUPP rats compared to control. These techniques produced high-quality data that enabled the assessment of oxygenation and perfusion parameters. Oxygenation was decreased in RUPP placenta; however, 

perfusion parameters did not reveal differences, which requires further investigations. 

 

Purpose: Preeclampsia (PE) and fetal growth restriction (FGR) are pregnancy-related systemic syndromes driven by placenta dysfunction, in which oxygen and nutrient supply to the fetus is insufficient. 

For preclinical research on placental dysfunction and possible therapeutic strategies, the reduced uterine perfusion pressure (RUPP) rat model has been established1. Two important outcome measures for 

the assessment of placenta dysfunction are placental oxygenation and perfusion. The purpose of this study was to develop a preclinical MRI protocol to assess rat placental oxygenation and perfusion using 

quantitative T2* mapping three-dimensional dynamic contrast enhanced (3D DCE) MRI, respectively, and to establish whether these techniques can measure differences between healthy and RUPP 

placentas in the rat.  

 

Methods:  

Animal experiment: 

Pregnant Sprague Dawley rats were subjected to sham (n=5) or RUPP (n=6) surgery on gestational day (GD) 13. The RUPP model was achieved by clipping the ovarian arteries and abdominal aorta, 

intended to reduce the blood supply to the uterus. Animals were scanned at GD 19 on a 7T MRI scanner (MR Solutions, Guildford, UK). The MRI session consisted of T2-weighted anatomical imaging for 

localizing the placentas, followed by T2* weighted MRI for placental and fetal oxygenation assessment, and 3D-DCE MRI for perfusion assessment.  

T2* MRI:  

Quantitative T2* maps were based on a respiratory gated multi-slice multi-gradient-echo sequence with the following parameters: TR = 130 ms, TE0 = 2.2 ms, echo-spacing = 2.2 ms, number of echoes = 

8, flip-angle = 30o, FOV = 60 x 60 mm2, matrix = 192 x 192, slice thickness = 1.2 mm, number of slices = 3-5, acquisition time = 3-5 min.   

3D-DCE MRI: 

Dynamic contrast-enhanced MRI was based on a 3D RF-spoiled gradient-echo sequence with the following parameters: TR = 8 ms, TE = 2 ms, flip-angle = 25o, FOV = 60 x 60 x 60 mm3, matrix = 128 x 

96 x 96. K-space filling was done using a pseudo-radial scheme in the two phase-encoding directions and a tiny golden-angle increment of 16.95o between successive spokes (Fig. 1B). The pseudo-radial 

acquisition was repeated for 11 minutes. Subsequently, data was reconstructed with a temporal resolution of 22 seconds using a compressed sensing reconstruction algorithm with a total variation 

regularization in the temporal domain. 

 

Results: A typical T2-weighted anatomical scout scan is shown in Figure 2A along with representative examples of T2* weighted images from different fetuses (Fig. 2B) and their corresponding 

quantitative T2* maps (Fig 2C). For one case (Fig. 2D), the series of T2*-weighted images is given demonstrating the excellent image quality and delineation of several fetal organs at the different echo 

times. No further registration was needed in calculating the T2* maps. Figure 3 shows that the oxygenation status, as reflected by the R2* (1/T2*) values, was significantly lower in the maternal placental 

layer of the RUPP rats comparing to sham rats (p=0.01). However, no statistically significant differences between RUPP and sham rats were identified in the fetal placental layer, nor in the fetal brain or 

liver.    

3D dynamic contrast enhanced imaging of rat placentas was feasible and provided full coverage to cope with the complex arrangement of the placentas in the abdomen. The temporal enhancement starting 

from the central arterial canal on the maternal side to the fetal side and back to the maternal side can be appreciated from the 3D DCE time series (Fig. 3). Resulting signal intensity-time curves were 

analyzed semi-quantitatively by assessing the initial area under the curve (AUC) after signal normalization (Fig 5). No significant differences between the RUPP and sham rats were observed. 

 

Discussion: The MRI protocols used in this study produced high-quality T2* mapping and high-temporal resolution 3D DCE MRI that can be used to study placenta oxygenation and perfusion parameters 

in pregnant rats. Most previous human and animal studies focus on the changes in T2*-weighted signals in response to a respiratory challenge2. Our study showed that quantitative T2* differences can be 

detected at baseline between RUPP and sham groups. The decrease in placenta T2* reflects a change in oxygenation, in keeping with the found in the human placenta in fetal growth restriction and other 

animal models of preeclampsia3,4. 3D DCE quality remained good up to temporal resolutions of 20-25 seconds. Although this allowed us to perform an AUC analysis of the contrast agent uptake, this did 

not reveal the expected differences between RUPP and sham rats. This can have different reasons, including the position of the fetuses in the uterine horns, variability in fetal and placental weights, 

variability in litter size, and variability in phenotype severity. These sources of variability made the distinction more difficult to be detected. In the future, we will focus on implementation of improved 

quantitative DCE modeling to overcome some of these issues, e.g., by making use of reference region models5 to prevent the need for fast arterial input function (AIF) measurements. Finally, we would like 

to validate our MRI protocol with alternative techniques, such as photoacoustic imaging and contrast-enhanced ultrasound.  

 

Conclusion: T2* mapping and 3D DCE-MRI can be successfully applied in pregnant rats to study changes in oxygenation and perfusion. Our rat model of fetal growth restriction showed significant 

changes in oxygenation, whereas differences in perfusion parameter were not observed.  
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Figure 1. A) MRI protocol parameters. B) K-space pseudo-radial filling scheme for 3D-DCE. 

 

Figure 2. MRI of pregnant rats at GD 19. A) T2-weighted anatomical coronal image showing several fetuses and placentas. B) Zoomed-in 

T2*-weighted images showing fetuses and placentas from different rats.  C) Zoomed-in R2* maps of the same T2*-weighted images in 

(B). D) T2*-weighted images showing a fetus with its placenta at 8 different echo times (TE). 

 

Figure 4. Comparison of R2* values between RUPP and sham rats. A) R2* in placentas 
maternal and fetal layers (B) and (C) R2* values of fetal brain and liver respectively. Figure 

5. AUC of dynamic contrast enhancement time curves in maternal and fetal placental layers.  

 

Figure 5: AUC of dynamic contrast enhancement time curves in 

maternal and fetal placental layers.  

  

 

Figure 3: Three-Dimensional Dynamic contrast enhancement MRI. DCE MRI in three planes (coronal, 

axial and sagittal) showing the arrival of the contrast to the placentas. Lower right: Signal intensity time 

curve during contrast injection at selected placentas. 
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Synopsis:  

This study investigated to what extent blood-brain barrier (BBB) leakage (1) can be measured with DSC-MRI and (2) is influenced by perfusion. In vivo DCE 

(golden-standard) and DSC data of patients with cerebral small vessel disease (cSVD) and elderly controls were used, as well as simulations of signal curves. DSC-

MRI, in contrast to DCE-MRI, is not sensitive enough to measure subtle leakage in cSVD. Further research is required to better disentangle perfusion effects from 

leakage, and therefore correction methods should be used with caution for measuring subtle leakage. 

Introduction: 

Blood-brain barrier (BBB) impairment was previously linked to several pathologies, including cerebral small vessel disease (cSVD)1. Traditionally, BBB integrity 

is assessed by dynamic contrast-enhanced (DCE) MRI, which can measure subtle BBB leakage2. Recently, it has been suggested that (single-echo) dynamic 

susceptibility contrast (DSC) MRI can be used not only to assess cerebral blood volume (CBV), and flow (CBF), but also leakage of contrast agent (CA) across the 

BBB3,4. When CA leaks into the parenchyma, the DSC signal is affected by both T1- and T2*-effects. The most well-known method to correct for these leakage 

effects is the Boxerman-Schmainda-Weisskoff (BSW) model5, which is often applied in substantially leaking brain tumors. This model uses a reference 

concentration curve derived from non-leaking voxels. However, it does not account for perfusion effects, e.g. variations in mean transit time between healthy and 

diseased tissue. Therefore, Leigh et al. adapted the BSW-model to incorporate arrival time correction (ATC)6. The current golden-standard measurement for BBB 

leakage, DCE-MRI, is time-consuming (>20 min), whereas DSC-MRI scans are short (ca. 2 min) and already provides information on perfusion. Therefore, DSC-

MRI could be an attractive alternative for BBB leakage detection. However, it is unclear whether DSC-MRI is suitable for detecting subtle brain leakage. This 

study investigated to what extent BBB leakage (1) can be measured with DSC-MRI and (2) is influenced by perfusion. In vivo DCE (golden-standard) and DSC 

data of cSVD patients and elderly controls were used, as well as computer simulations.  

Methods:  

MRI acquisition: DCE- and single-echo DSC-MRI data were acquired in 15 cSVD patients and 12 elderly controls at 3T (Philips Achieva TX)7. Additionally, T1-

weighted and T2-weighted sequences were acquired for anatomical reference (Table 1). 

Simulations: A realistic, non-leaking DSC relaxation curve was mimicked based on in vivo data. The leakage fraction (K2) was incorporated according to the 

BSW-method (Equation 1), after which noise (derived from in vivo data) was added. K2 values were calculated from 100 simulated curves for each K2 value, 

where values above the limit of quantification (LOQ) (SNR≥10) were assumed reliable.  

Data analysis: Both DCE and DSC images were corrected for subject motion (FSL). Voxel-specific leakage rates (Ki) were obtained from the DCE-MRI data using 

Patlak modeling and histogram correction2 to represent the ground-truth BBB leakage level. The DSC-derived leakage fraction was obtained voxel-wise using two 

methods: the basic BSW-method5 (Equation 1), and the extended BSW-model correcting for ATC6 (Equation 2). Furthermore, CBV and CBF maps were calculated 

using an arterial input function from manually selected voxels in the middle cerebral artery8.  

∆�̃�2∗(𝑡) = 𝐾1∆𝑅2∗̅̅ ̅̅ ̅̅ ̅(𝑡) − 𝐾2𝐵𝑆𝑊 ∫ ∆𝑅2∗̅̅ ̅̅ ̅̅ ̅(𝑡′)
𝑡

0
𝑑𝑡′     (1)  

∆�̃�2∗(𝑡)𝐴𝑇𝐶 = ∆𝑅2∗̅̅ ̅̅ ̅̅ ̅(𝑡) − 𝐾2𝐴𝑇𝐶 ∫ ∆𝑅2∗̅̅ ̅̅ ̅̅ ̅(𝑡′)
𝑡

0
𝑑𝑡′, with ∆�̃�2∗(𝑡)𝐴𝑇𝐶 = 𝛾∆𝑅2∗̅̅ ̅̅ ̅̅ ̅ (

𝑡+𝜏

𝛼
) (2)  

With K1 = proportional constant, ∆R2∗̅̅ ̅̅ ̅̅ ̅ = average concentration from non-enhancing voxels, and 𝛾, 𝛼 and 𝜏 = ATC parameters for scaling in height and width, and 

shifting respectively. 

Segmentation of the normal-appearing white matter (NAWM) and gray matter (GM) was performed using Freesurfer9. White matter hyperintensities (WMH) were 

semi-automatically segmented from the NAWM10. Region masks were co-registered to DCE and DSC image space. 

Statistics: To compare the outcome measures between all ROIs, within-subject ANOVAs with subsequent post-hoc analyses and Bonferroni correction were 

conducted (p<0.05 is significant). The relationship between K2 and perfusion measures was assessed using Pearson’s correlation.  

Results:  

Simulations: Figure 1 shows how increasing K2 values change the shape of the relaxivity-time curves. Note that two curves with very low K2 values (<0.01 min-1) 

can barely be distinguished after noise addition. Simulations showed that K2 can be measured up to the LOQ of 4*10-3 min-1 (Figure 2).   

Data analysis: Post-hoc analyses identified a significantly higher Ki in the NAWM compared to GM (p=0.012) and WMH compared to NAWM and GM (both 

p<0.001) (Figure 3A). K2BSW did not significantly differ between regions (F=-0.377, p=0.557) (Figure 3B). However, after ATC, post-hoc analyses revealed a 

significantly lower leakage fraction (K2ATC) in the NAWM compared to GM and WMH compared to NAWM and GM (all p<0.001) (Figure 3C). Further analyses 

revealed that the ATC scaling factor γ had a significant negative correlation with DSC-derived perfusion measures (r=-0.512, r=-0.491 and r=-0.517 for K2ATC, 

CBV, and CBF respectively, p<0.001). 

Discussion:  

Two DSC analysis methods were evaluated for detecting subtle BBB leakage. In line with previous research11, the DCE-derived leakage rate Ki was found to be 

significantly elevated in WMH compared to NAWM and GM. From simulations, a detection limit for K2 was determined at 4*10 -3 min-1. For the leakage fraction 

obtained with the BSW-method (K2BSW), no significant differences were found between tissue types, which is in line with these values being lower than the 

detection limit obtained from simulations. After performing ATC, the leakage fraction (K2ATC) became lower in WMH compared to other tissue types. 

Interestingly, the perfusion parameters CBV, CBF, and the ATC scaling factor γ, varied in a parallel way over the various tissue types, which could indicate that the 

ATC correction method introduces obfuscating perfusion effects. We therefore argue that the BSW-method, with or without ATC correction, is not suited for the 

detection of subtle leakage.  

Conclusion:  

DSC-MRI, in contrast to DCE-MRI, is not sensitive enough to measure subtle leakage in cSVD. Further research is required to better disentangle perfusion effects 

from leakage, and therefore correction methods should be used with caution for measuring subtle leakage. 

References: 1. Zhang CE, Wong SM, van de Haar HJ, et al. Blood-brain barrier leakage is more widespread in patients with cerebral small vessel disease. Neurology. 
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Med Phys. 2017;44(8):4112-4125; 3.  Dewey BE, Xu X, Knutsson L, et al. MTT and blood-brain barrier disruption within asymptomatic vascular WM lesions. Am J Neuroradiol. 

2021;42(8):1396-1402; 4. Etherton MR, Wu O, Cougo P, et al. Sex-specific differences in white matter microvascular integrity after ischaemic stroke. Stroke Vasc Neurol. 

2019;4(4):198-205; 5. Boxerman JL, Schmainda KM, Weisskoff RM. Relative Cerebral Blood Volume Maps Corrected for Contrast Agent Extravasation Significantly Correlate with 

Glioma Tumor Grade , Whereas Uncorrected Maps Do Not. Ajnr Am J Neuroradiol. 2006;27(4):859-867; 6. Leigh R, Jen SS, Varma DD, Hillis AE, Barker PB. Arrival Time 

Correction for Dynamic Susceptibility Contrast MR Permeability Imaging in Stroke Patients. Herholz K, ed. PLoS One. 2012;7(12):e52656; 7. Wong SM, Jansen JFA, Zhang CE, et 

al. Blood-brain barrier impairment and hypoperfusion are linked in cerebral small vessel disease. Neurology. 2019;92(15):e1669-e1677. 8. Zaharchuk G. Theoretical basis of 

hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. Am J Neuroradiol. 2007;28(10):1850-1858; 9. Fischl B, Salat DH, 
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barrier permeability is associated with higher white matter hyperintensities burden. J Neurol. 2017;264(7):1474-1481. 

To what extent is DSC-MRI able to detect subtle blood-brain barrier leakage in cerebral small-vessel 

disease? 
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Figure 1: (A) Simulated relaxation-time curves obtained from the NAWM of an in vivo dataset. (B) After the addition of realistic noise levels, obtained from the same in vivo 

dataset, curves with low K2 values (<0.01 min-1) can no longer be distinguished.  

Figure 3: Histograms of (A) the (golden-standard) DCE-derived leakage rate Ki, (B) the DSC-derived leakage fraction obtained with the basic BSW-method (K2BSW) and (C) the 

DSC-derived leakage fraction obtained with the extended BSW-model correcting for ATC (K2ATC), for the different tissue types. 

Table 1. This table summarizes the acquisition parameters of the sequences used in 

this study. FLAIR, Fluid Attenuated Inversion Recovery; DCE, Dynamic Contrast 

Enhanced; GRE, Gradient Echo; DSC, Dynamic Susceptibility Contrast; PRESTO, 

PRinciples of Echo Shifting using a Train of Observations; DSI, Dynamic Scan 

Interval; TR, repetition time; TE, echo time; TI, inversion time; FA, Flip Angle. 

 

Figure 2. Calculation of K2 values from 100 simulated relaxation-time curves for each 

K2 value. According to the limit of quantification (SNR≥10), K2 values lower than 

4*10-3 min-1 are assumed no longer reliable. 
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Synopsis: In the clinical follow-up of glioblastoma patients, presence of delayed arterial transit times (ATT) could affect the evaluation of ASL perfusion data. In this retrospective study the influence of the 
presence and severity of ATT-artifacts on perfusion assessment and differentiation between tumor progression and pseudo-progression were studied. The results show that the presence of ATT-artifacts 

lowers the agreement between radiological evaluation of DSC-MRI and ASL, although the severity of ATT-artifacts did not have significant influence. In conclusion, detection of ATT-artifacts is important 

as it could affect radiological evaluation of ASL-data. Future work aims to include additional quantitative perfusion measures. 

 

Purpose: Arterial Spin Labeling (ASL) and Dynamic Susceptibility Contrast MRI (DSC-MRI) are commonly used techniques to measure perfusion in patients with glioblastoma. Perfusion MRI is especially 
helpful in distinguishing tumor progression from pseudo-progression1,2,3,4. The consensus approach for ASL is pCASL with a single post-labeling delay (PLD)5 of 1800ms, in which the resulting images can 

be affected by arterial transit time (ATT) artifacts6. When the ATT is prolonged, not all labeled spins have arrived in the tissue leading to underestimation of perfusion, which could affect clinical assessment. 

Therefore, the two research questions of this study are:  

1. Does the presence of ATT-artifacts impact the assessment of perfusion, i.e. are ASL maps in lesser agreement with DSC-MRI when delayed transit times are present?  

2. Do delayed ATTs influence the radiological evaluation of ASL perfusion maps? 

 

Methods: In this retrospective, single-center study data were analyzed from 64 adult patients (Table 2) with histologically confirmed glioblastoma who received postoperative radio(chemo)therapy. The study 

was performed in accordance with local IRB-regulations. ASL scans were made ±3 months post-radiotherapy either with 2D pCASL with 1600ms labeling-duration (LD) and 1525ms (first slice) – 2120ms 

(last slice) PLD, or with 3D pCASL 1800ms/1800ms (LD/PLD). 

The data was evaluated by a neuroradiologist based on three scores: 

1. The presence/absence of ATT-artifacts were scored as well as their severity (%). 

2. Perfusion score: ASL and DSC perfusion of the enhancing tumor lesion were scored as increased or as normal/decreased. Scores were made per lesion (78 in total), focusing on the nodular part.   

3. Radiological score: ASL and DSC perfusion maps were separately interpreted on a 7-point scale with 1 representing definite tumor progression and 7 definite pseudo-progression.  

The concordance between the DSC and ASL scans in radiological score was tested by a sign test (threshold of p<0.05) both for patients grouped based on presence versus absence as well as on severity of 

ATT-artifacts (1-50% versus 50-100%, thus excluding patients without ATT-artifacts). 

 

Results: Figure 1 shows example ASL images with different levels of delayed ATT-severity. The total number of patients with ATT-artifacts present was 52 (81.3%) with 14 showing severe ATT-artifacts. 

Table 1 shows an overview of the perfusion assessment when patients were grouped according to presence/absence of ATT-artifacts. 

In the presence of ATT-artifacts, for 35 patients (67.3%) the radiological score showed agreement between ASL and DSC. In the absence of ATT-artifacts, this was the case for 7 patients (58.3%). The sign 
test showed a significant difference in the scoring of the ASL and DSC scans in the presence of ATT-artifacts (p = 0.013, median (IQR) ASL = 3.00 (3.00-6.00), median (IQR) DSC = 5.00 (3.00-6.00)), 

whereas in the absence of ATT-artifacts no significant difference was found (p = 0.375, median (IQR) ASL = 3.00 (2.00-5.75), median DSC = 4 (2.25-5.75)). Figure 2 shows Bland-Altman and correlation 

plots for the radiological scores. 

For minor ATT-artifacts, exact agreement between ASL and DSC scores was found for 26 patients (68.4%), see Figure 3. For severe ATT-artifacts, this was the case for 9 patients (64.3%). In case of minor 

ATT-artifacts, a significant difference (p = 0.039, median (IQR) ASL = 3.00 (3.00-6.00), median (IQR) DSC = 5.00 (3.00-6.00)) was found between ASL and DSC scores, while for severe artifacts no 

significant difference was found (p = 0.375, median (IQR) ASL = 5.00 (2.75-5.25), median (IQR) DSC = 5.00 (3.00-6.00)). 

 

Discussion: In this study the influence of a delayed ATT on the perfusion assessment and radiological evaluation of glioblastoma was investigated. Main findings were: 1) In 81% of the patients ATT-artifacts 
were present; 2) The perfusion assessment showed reasonable agreement between ASL and DSC with little influence of the presence of ATT-artifacts, although ASL had a minor tendency to overestimate 

perfusion compared to DSC; 3) The presence, but not the severity of ATT-artifacts affected the radiological evaluation of ASL scans. 

First, it should be recognized that even when using settings close to the recommended settings, in a large number of patients ATT-artifacts were observed. Second, the relative perfusion scores were for most 

patients in agreement with DSC-scores, but when in disagreement ASL had the tendency to overestimate perfusion. This finding was, however, independent of the presence of ATT-artifacts. When looking 
at the radiological interpretation, a statistically significant difference was found between the scoring on DSC and ASL when ATT-artifacts were present. Furthermore, the correlation analysis showed that the 

ASL evaluation tended slightly more towards tumor progression than for DSC in agreement with the tendency to overestimate perfusion. This could possibly be explained by the apparent increased signal on 

the ASL scan caused by label present within large arteries. The limited influence of delayed ATT-severity could be explained by the fact that only 14 patients were present in the highest severity group, as 

opposed to 38 patients with low severity. Furthermore, acknowledgement of severe ATT-artifacts could have caused a bias in the radiological evaluation. 

 

Conclusion: The presence of delayed ATT in ASL-data seems to impact the radiological evaluation of ASL-data towards tumor progression (as compared to the DSC evaluation), whereas in patients without 

ATT-artifacts ASL and DSC provide more similar radiological scores. Future work aims to include additional quantitative perfusion data. 
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Male patients, n (%) 37 (57.8%) 

Age at follow-up MRI (years ± SD) 60.1 ± 12.7 

KPS score, median (range) 90 (80-100) 

Surgery, n (%) 

• Resection 

• Biopsy 

 

• 53 (82.8%) 

• 11 (17.2%) 

Second surgery, n (%) 11 (17.2%) 

Radiotherapy dose, n (%) 

• 40 Gy 

• 45 Gy 

• 60 Gy 

 

• 8 (12.5%) 

• 8 (12.5%) 

• 48 (75%) 

Temozolomide chemotherapy, n (%) 52 (81.3%) 

 

 
 

   

 

 

 

 

 

A DSC normal DSC increased 

ASL normal 27 2 

ASL increased 9 26 

B DSC normal DSC increased 

ASL normal 5 0 

ASL increased 2 7 

Figure 1. ASL images of A) 57 year-old female without ATT-artifacts; B) 68 year-old male with moderate ATT-artifacts; C) 71 year-old 

female with severe ATT-artifacts. In C) the signal in the large vessels is clearly visible. 

Figure 2. Bland Altman plots (+/- 1.96 SD) in patients with (A) and without (B) ATT-artifacts. 
Correlation plots in patients with (C) and without (D) ATT-artifacts, showing significant 

correlations (Spearman’s rho = 0.850 versus 0.902) between the radiological evaluation on ASL 

and DSC scans (p < 0.01 in both cases). Scores are a 7-point scale, with a score of 1 representing 

definite tumor progression and a score of 7 definite pseudo-progression. 

Figure 3. Bland Altman plots (+/- 1.96 SD) in patients with minor (A) and severe (B) ATT-

artifacts. Correlation plots in patients with minor (C) and severe (D) ATT-artifacts, showing 

significant correlations (Spearman’s rho = 0.835 versus 0.914) between the radiological 
evaluation on ASL and DSC scans (p < 0.01 in both cases). Scores are a 7-point scale, with a 

score of 1 representing definite tumor progression and a score of 7 definite pseudo-progression. 

Table 2. Clinical information. 

Table 1. Perfusion assessment, displaying number of lesions. A) ATT-artifacts 

are present: sensitivity = 92.8%, specificity = 71.1%. B) ATT-artifacts are not 

present: sensitivity = 100%, specificity = 71.4%. 
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Synopsis 

 

Deep insight about tumor microvasculature is important for diagnosis and progression of glioma patients. Relative Cerebral Blood Volume (rCBV) and 

vessel size are two parameters, derived from perfusion MRI, used for evaluation of tumor microvasculature in glioma. In this study, we investigated the 

clinical value of both rCBV and vessel size and their correlation for three subgroups of glioma based on the recent 2021 World Health Organisation (WHO) 

classification scheme. The result showed that neither rCBV nor vessel size differed significantly between glioma subtypes, though correlation of these two 

parameters sheds light on the microvasculature characteristics of each subgroup. 

Background and Purpose: The creation of new blood vessels, angiogenesis, plays a critical role in glioma development. The formation of irregular vasculature is 

not only varying between various glioma subtypes, but changes in the underlying vasculature can also herald malignant transformation (1). In particular in light of 

the recent 2021 WHO classification scheme, early and accurate diagnosis of glioma or malignant transformation is of utmost importance for prognosis and treatment 

decision making.  

The most commonly assessed imaging biomarker of tumor vasculature is rCBV coming from dynamic susceptibility contrast (DSC) MRI. Although previous work 

illustrated that increased rCBV corresponds to increased malignancy in diffuse glioma, in practice this does not hold when oligodendroglioma - as defined in the 

WHO 2021 classification scheme - are included (2). This type of tumor is known for its “chicken wire” vasculature, which in turn can lead to high rCBV values (3).  

When extending DSC MRI to assess simultaneous acquisition of T2  and T2* weighted images to follow the passage of a gadolinium-based contrast agent (GBCA) 

through the cerebral vasculature, vessel size imaging (VSI) can be done, that has the potential to add information about microvascular structure. We explored using 

VSI in addition to rCBV to assess three diffuse glioma subtypes present within the WHO 2021 glioma classification.  

Materials and Methods: A retrospective dataset consisting of 38 patients with confirmed non-enhancing glioma was used and classified in three groups: 

Oligo/IDHMUT&1p/19q-, Astro/IDHMUT, and Glioblastoma/IDHWT (4). All patients underwent 3T MRI scanning (GE, Milwaukee, WI, USA) prior to surgery. For 

DSC MRI, Hybrid EPI (HEPI) was used with following parameters: 122 repetitions, TR: 1500m, FOV: 15 slices, voxel size: 1.88x1.88x4.00 mm3, TE(GRE): 18.6 

ms and TE(SE): 69 ms, with administration of 7.5ml of GBCA (Gadovist, Bayer, Leverkusen, GE). A pre-load bolus of equal size was administrated 5 minutes before 

the DSC scan was acquired. Diffusion weighted imaging (2 b-values: 0, 1000 s/mm2, voxel size: 1x1x3 mm3 and TE/TR of 63/5000 ms) was done to estimate the 

apparent diffusion coefficient (ADC) required for VSI. High resolution T1-weighed pre- and post-contrast (voxel size: 1x1x0.5 mm3; TE/TR: 2.1/6.1 ms), T2 (voxel 

size: 0.5x0.5x3.2 mm3; TE/TR: 107/10000 ms), and FLAIR (voxel size: 0.6x0.5x0.5 mm3; TE/TR: 106/6000 ms) images were acquired and used for tumor 

segmentation. 

Estimates of mean vessel size and normalized rCBV maps were made according to previously described methods (5,6). HD-GLIO was used to generate tumor regions 

of interest (ROI) for all patient . Average tumor vessel size, normalized rCBV, and ADC were calculated for each group of patients. Additionally, correlation analysis 

was performed between rCBV and vessel size for each subgroup. 

Results: Patient information is summarised in Table 1. Figure 1 shows an example slice of ADC, rCBV and vessel size maps for three patients, each selected from 

one subgroup. The average of the microvascular parameters (rCBV, vessel size) and ADC are presented in figure 2 for each patient and  each group. In 

Oligo/IDHMUT&1p/19q-, rCBV was significantly higher compared to Astro/IDHMUT (p < 0.05, unpaired t-test), but equal to Glioblastoma/IDHWT. A trend of 

increased vessel size was found for Oligo/IDHMUT&1p/19q- and Astro/IDHMUT compared to Glioblastoma/IDHWT, but no significant differences were found. 

Vessel size and rCBV showed strong correlation in Glioblastoma/IDHWT (r=0.82, p=0.02), moderate correlation in Oligo/IDHMUT&1p/19q- (r=0.56, p=0.01) and 

no correlation in Astro/IDHMUT (r=0.17, p=0.57) (Fig. 3).  

Discussion: The result of this study on nonenhancing glioma suggests that rCBV and vessel size alone cannot distinguish between three subgroups based on the 2021 

WHO guidelines. However, combining these two parameters and measuring the correlation of these two parameters sheds light on the microvasculature characteristics 

of each subgroup.  

Intuitively it might be expected that vessel size and rCBV are positively correlated, however this correlation is modulated by the vessel density. In other words, in an 

area with densely packed microvessels, slight change in vessel diameters can result in a considerable change in rCBV, whereas in an area with low vessel density, 

change in vessel diameters may lead to no or limited change in rCBV. Oligo/IDHMUT&1p/19q- with high rCBV and high VSI showing a moderate relationship 

between these two parameters, might be reflecting high vessel density. Low density might be present within the Astro/IDHMUT, as we see no correlation - while in 

Glioblastoma/IDHWT our findings indicate high vessel density. Note that this would be in line with the histopathological findings in (3).  

Future work validating these results should include histology measurements of vessel size and mean vessel density of targeted biopsies of tumor tissue based on rCBV 

and vessel size and investigation of the clinical applicability of VSI in glioma imaging diagnostics.  
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Figure 1: Example MRI images of three patients of Oligo/IDHMUT&1p/19q- (A), Astro/IDHMUT (B) and Glioblastoma/IDHW (C). The images from left to right 

respectively are: T2W FLAIR; T2W FLAIR overlaid with tumor ROI, apparent diffusion coefficient (ADC), relative cerebral blood volume (rCBV), and vessel size. 

 

 

Figure 2: Scatter plot of ADC, rCBV and Vessel Size (VS) with mean bar for three subtypes of gliomas. * Significantly different, p < 0.05, unpaired t-test. 

 

 

Figure 3: correlation between vessel size and rCBV for three subtypes of gliomas   

 

 

Table 1: Summary of clinical description of patients in the dataset. 
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Synopsis: Despite promising results, clinical translation of myocardial arterial spin labelling (myoASL) is hampered by insufficient reproducibility and robustness. 

We investigated the influence of physiological and sequence parameters on FAIR-myoASL in simulations as well as phantom experiments, and developed a 

correction method based on separately acquired T1 maps. Our simulation and phantom results show acquisition related MBF differences, potentially undermining 

the reproducibility of myoASL measurements. Inaccuracies between true and reconstruction blood T1, further render the sequence susceptible to heart rate 

variations, particularly for larger T1 mismatch. Using accurate blood T1 times in reconstruction may improve robustness and reproducibility. 

Introduction 

The clinical gold standard for detection of myocardial ischemia is first pass myocardial perfusion imaging1, where the distribution of an exogenous contrast agent is 

tracked using T1 weighted imaging. However, the use of contrast agents limits repeated use and its clinical applicability. Arterial spin labelling (ASL), on the other 

hand, relies on magnetically labelled blood as an endogenous contrast and has proven effective in quantifying neurovascular perfusion2. In cardiac applications, 

however, several challenges are faced, such as a complex anatomy and high levels of physiological noise3. Although myoASL and positron emission tomography 

based myocardial blood flow (MBF) were shown to agree4, insufficient robustness and reproducibility hinder widespread clinical translation. In this work, we 

sought to investigate the influence of physiological and sequence parameters on the reproducibility of myoASL based perfusion. Further, we sought to develop a 

correction method based on precedingly acquired T1 maps to increase robustness of myoASL. 

Methods 

Numerical Simulations: Bloch simulations were performed to investigate the effect of physiological and sequence parameters for bSSFP and spGRE based 

myoASL. For both imaging readouts, the acquisition flip angle (FA), matrix size, and delay between tag and control image (C-T delay) were varied. Moreover, 

varying RR intervals, i.e. different effective inversion times (TI), were simulated, with a blood volume fraction of 0.14 and in-flow rate of 0.8ml/g/min.  

FAIR-myoASL sequence: Imaging was performed across two 3T scanners (Magnetom Skyra/Prisma, Siemens Healthineers, Erlangen Germany). For all 

measurements, a double ECG-gated Flow Alternating Inversion Recovery (FAIR) ASL sequence4,5 was implemented (Fig.1). For the control and tag image, a 

selective and global adiabatic inversion pulse was applied, respectively, during mid-diastole. Image acquisition (bSSFP/spGRE) followed in mid-diastole of the 

successive heartbeat. 

Phantom and In vivo Measurements: In total, one pair of baseline images (no inversion) and 5/6 (phantom/in vivo) control-tag pairs were acquired with 8mm 

slice-thickness and 2x2mm/1.7x1.7mm base resolution (phantom/in vivo). MOLLI6 was used for T1 mapping in phantom and in vivo. Phantom experiments were 

performed with varying RR intervals, FAs and C-T delays in a NiCl2-doped agarose phantom. In-vivo images of 4 healthy subjects (4 male, 39±4.7 years) were 

obtained with a 6s C-T delay in 12-18s long breath-holds per image pair depending on the heart rate.  

Data analysis: After groupwise registration7, mistriggered control-tag image pairs were excluded. Buxton’s model8 was used for MBF reconstruction, where 

control and tag signal are corrected with respective TI and blood T1 time (T1B). Previous in vivo studies relied on a fixed literature based value for T1B 

(~1700ms)4,5,9. Here, individual MOLLI-T1B times were used in a second reconstruction method to obtain perfusion maps and septal MBF. In simulations T1B was 

varied, while in phantom the model T1 was varied. Mean MBF values were obtained by averaging MBF over all ASL pairs and subjects. 

Results 

Simulated MBF values were constant (3.5/2.3 ml/g/min bSSFP/GRE) for varying heart rates when simulation and reconstruction T1B were identical. When “true” 

and reconstruction T1B differ, however, the obtained MBF values were highly heart rate dependent. This effect was more pronounced for lower heart rates and is 

observed in both bSSFP and GRE (Fig. 2a). For higher FAs and matrix sizes, bSSFP based MBF continuously increased. In GRE, MBF decreased to zero for FAs 

of 30° and beyond (Fig. 2b). For larger matrix sizes, MBF increased in bSSFP and continuously decreased in GRE (Fig. 2c). With varying C-T delay (Fig. 2d), 

MBF values showed almost no deviation from values simulated with the global inversion pulse acting on fully recovered magnetization (infinite delay). 

Phantom data depicts similar trends, where MBF difference due to T1B mismatch was stronger for lower heart rates (Fig. 3a). MBF values in bSSFP increased with 

increasing FA, while in GRE the values increased until 18°, then decreased and stayed constant after 35°. bSSFP based MBF remained constant over the entire 

range of matrix sizes, whereas GRE based MBF continuously decreased with increasing matrix size. For varying C-T delay, MBF remained largely constant in 

bSSFP and GRE. 

In vivo perfusion maps are shown in  Fig. 4a for bSSFP and GRE acquisition. Septal MBF was 1.53±1.04ml/min/g(bSSFP) /1.9±1.55ml/min/g(GRE) with fixed 

T1B, whereas with adaptive T1B MBF was 1.46±0.97ml/min/g (bSSFP) /1.81±1.44ml/min/g (GRE) Fig. 4b.  

Discussion 

Our simulation and phantom results show that sequence parameters such as FA and matrix size lead to MBF differences, potentially eroding the reproducibility of 

myoASL. Due to the impact of the readout, effect were particularly pronounced for a large mismatch between reconstruction and true T1B. Moreover, MBF values 

show a heart rate dependence when true and model T1B differ. Without correction, this may lead to measuring spurious MBF changes in stress and rest conditions. 

The effect of varying C-T delay on MBF values is negligible in comparison, indicating that 6s may suffice despite long T1B. Both in bSSFP and GRE, simulated 

and phantom MBF values as well as MBF maps match previously reported perfusion values4,5. The use of adaptive instead of fixed T1B yields slightly more robust 

reconstruction of myoASL based perfusion. 

Conclusions 

MyoASL shows residual sensitivity to sequence parameters and potentially HR dependence. This may reduce the reproducibility in clinical use and corrupt 

stress/rest performance. Simulations show that the use of accurate blood T1 time may mitigate this effect for improved robustness. 
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Figure 1: Sequence Diagram. (a) Diagram of the double ECG-gated Flow-Alternating Inversion Recovery myocardial ASL (FAIR-myoASL) sequence. Control and tag images are acquired after a 
selective and global inversion pulse during mid-diastole, respectively, with a 6s delay in between. (b) During control image acquisition non-inverted blood flows into the myocardium, while in the tag 

image inverted blood flows in. (c) Registered control and tag images are processed with a baseline image to obtain myocardial blood flow values. 

Figure 2: Numerical Simulations. (a) Simulated myoASL-MBF for varying simulated and 

fixed reconstruction blood T1 (1700 ms) for bSSFP/GRE readouts. Larger T1 inaccuracy 

renders the sequence more susceptible to heart rate variations. Varying sequence parameters, 
such as the flip angle (b) and matrix size (c) lead to further differences in MBF. Variations in 

the delay between tag and control image (d) result in only minimal deviation of MBF values 

compared to values obtained with simulated infinite delay. 

 Figure 3. MyoASL-MBF obtained in phantom (vial T1: 1800ms) with bSSFP and GRE 

readout plotted against the difference in vial and reconstruction T1 time of blood: For (a) 

varying RR (500-1500ms), (b) acquisition flip angle (5°-70°), (c) matrix size (144x144-
240x240, resolution 1.7x1.7mm2), and (d) delay between tag and control image. MBF values 

exhibit stronger variation in RR duration with increasing difference in T1, and show a flip-angle 

and matrix-size dependence. 

 

Figure 4: In vivo MBF maps and septal MBF. (a) Pixelwise average myoASL-MBF maps for one subject in bSSFP and GRE readout (TR/TE 3.3/1.65ms/3.4/3.1ms (bSSFP/GRE), GRAPPA-factor 2, 
Partial Fourier 6/8). (b) Mean septal MBF values reconstructed with fixed and adaptive blood T1 for bSSFP and (c) GRE readout for all subjects (blue: interquartile range). The standard deviation (black) 

was similar in bSSFP and GRE, but smaller for adaptive T1 times. 
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Synopsis 

In this work a low field point-of-care system design framework is created using target field methods for all of the hardware components. A new target field method for Halbach-based 

magnet optimization with variable ring diameter and spacing is derived. Magnet, gradient and RF are combined into a single framework which includes a feedback loop for dealing 

with the component interdependencies. The result is a pipeline which with a few user inputs can create an optimal magnet, gradient and RF design in minutes. 

Introduction 

Low-cost portable low field point-of-care systems can be designed for particular applications based on specific interdependent hardware requirements1-4. In this work an iterative 

framework including feedback is created to design the optimal Halbach-based magnet, gradient and RF coils such that a set of user-specified imaging requirements are met. In order to 

achieve this most efficiently we use target-field (TF) methods, which have been commonly used in gradient coil design5-10, and occasionally in RF coil design, but not in Halbach array-

based permanent magnet design: a new mathematical model was derived to achieve this. Combining these methods results in a unique framework that, with minimum input, can design 

an entire low field MRI system within minutes.  

Methods  

Magnet design using a TF approach: TF approaches rely on specifying the desired field (gradient, B0 or RF) within a certain region and finding an analytical relationship with respect 

to the source quantity.  

Starting from the quasi-static Maxwell’s equations an integral representation for the magnetic field in terms of a continuous cylindrical Halbach magnetization is derived. The continuous 

magnetization is discretized to represent individual magnets. The magnets are located within rings of variable radii and spacing. The goal is to obtain a set of ring radii r and ring 

spacings d such that bT – bz(r,d)=0. Here bT is the vector containing the prescribed field values inside the desired region and bz(r,d) is the vector containing the field values due to 

chosen radii and spacing vectors. This non-linear problem is solved using a standard Newton optimization scheme11 and constraints are applied to the radii and spacings to ensure 

practical solutions.  

Iterative system design: The above TF approach for magnets is combined with previously derived TF methods for gradient and RF coil design5,6 to create the iterative design framework 

illustrated in Figure 1. Given the user inputs, a system is designed which is as compact as possible, has the strongest possible magnet and which has sufficient homogeneity with regards 

to the gradient strength-dependent readout pixel bandwidth specified by the spatial resolution.  

The initial guess for the field strength and number of rings is found by taking the most compact design given the minimum radius and a length/diameter ratio of 1.7 (based on previous 

literature). Next, power optimized gradient coils (with dimensions determined by the magnet) are designed. Using the efficiency [Tm-1A-1], the maximum current from the gradient 

amplifier, and the targeted resolution, the readout pixel bandwidth is compared with the blurring effect of ΔB0. If the magnet inhomogeneities dominate, the model loops back to magnet 

design, the target B0 is decreased by 2%, and ring diameters and separation distance are optimized to create a more homogeneous (but larger) magnet. This process is repeated until the 

desired spatial resolution is reached. If the user-specified minimum B0 is reached before this, additional magnet rings are added and the pipeline is restarted. If adding rings creates a 

magnet longer than the specified maximum, inputs such as the spatial resolution need to be relaxed. In the final step after convergence, the RF coil is designed using a uniform TF 

oriented in the axial direction over the ROI. The RF pulse duration must be sufficiently short to excite the entire ROI, and there is a final check that this is possible with the modelled 

Q value and the power available from the RF amplifier.  

Results 

To demonstrate the potential of the framework an adult neuroimaging system was designed. The input parameters are shown in Figure 2.  

For a 300 mm clear bore, the inner magnet layer diameter is set to 320 mm. The initial uniform ring spacing of 25 mm combined with a length/diameter ratio of 1.7, dictates that 23 

rings constitute the initial setup. The output of the first pipeline iteration is shown in the first column of Figure 3. The B0 inhomogeneity is higher than the readout pixel bandwidth and 

so the magnet design iterates with B0 successively decreased in steps of 2%. The second column shows that when the minimum specified B0 (50 mT) is reached, the required magnet 

homogeneity is still not obtained and so additional magnet rings are added. The iterative process continues until a solution is determined with a 25-ring magnet producing a 53 mT field 

(third column): the magnet designs corresponding to the columns are also shown in Figure 3. Figure 4 shows the ΔB0 vs Newton iterations during the last step prior to the pipeline 

obtaining a solution. Figure 5 shows the final output of the framework: the gradient coils, magnet and RF coil are shown separately and combined in one assembly.  

Conclusion and Discussion 

A novel TF approach for Halbach-based magnet design is combined with RF and gradient coil methods, creating an integrated model which includes component interdependencies, 

amplifier specifications, and spatial resolution. The result is a very fast optimization framework which can be used to design an entire low field MRI system. The next step is to build 

in additional passive shimming to relax the homogeneity requirements of the basic magnet. 
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Figure 1: Flowchart of the system design methodology including the feedback loop.  

 

Figure 2:  Table containing the input parameters 

of the design framework for the adult size 

neuroimaging example.  

Figure 3:  Left) Table showing the key output parameters for three events during the design framework: (A) the 

initial compact design from which the pipeline starts the iterations. (B) the magnet design after iterating to the 

user specified minimum target field strength of 50 mT. (C) The improved design after the number of rings is 
increased. Right) The magnets corresponding columns (B) and (C). Only the inner radial layer of magnets is 

shown for clarity.  

Figure 4: The homogeneity in PPM per Newton iteration step for the final magnet design discussed in the results 
section. The ring radii optimization is shown in red and ring spacing in black. The Newton update scheme is 

shown below the figure: Δr/d can be calculated by taking the Moore-Penrose inverse of the Jacobian matrix which 

holds the derivatives with respect to each radius/spacing for every target point in space. This is multiplied with 
the target field vector minus the system vector. The minimum and maximum ring spacing and diameter constraints 

are included in this scheme.  

Figure 5: Visualization of the framework output. The gradient coils, Magnet and RF-coil are shown separately as well as together in a telescopic view. RF coil 

(green), x-gradient (black), z-gradient (red), y-gradient (yellow), magnet (blue&red) 
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Synopsis: Acoustic noise in MRI is a main source of patient anxiety, with noise levels reaching up to 130 dB. In this work, a low-cost solution is proposed, 

combining active noise cancelling and direct sequence noise prediction from the scanner gradient inputs. The prediction is based on the linearity between the 

derivative of the gradient coil input and corresponding acoustic noise. A proposed Predictive Noise Cancelling demonstrated an in-bore noise reduction up to 10 dB 

despite the system imperfections. 

 

Purpose: Acoustic noise in MRI is a main contributor to patient discomfort, with sound pressure levels up to 130 dB1. In addition to presently used passive 

earplugs or headphones, silent MRI sequences or hardware solutions have been proposed. However, silent sequences often trade-off scan time or acquisition 

quality, and hardware upgrades are cost intensive2-3. Active noise cancelling, i.e. using simultaneously applied anti-noise, has also been explored4, but is limited to 

the application of repetitive sequences only5. While this performs well in fMRI studies, clinical scan protocols contain distinct scan sequences and are therefore not 

suited for active noise cancelling. In this work, we present a versatile solution by combining the anti-noise approach with a direct noise prediction from the scanner 

gradient inputs, termed predictive noise cancelling (PNC). We describe a low cost setup for in-bore noise cancelling and evaluate its potential for noise attenuation. 

 

Methods: An acoustic setup was constructed, placing a custom speaker box and amplifier outside the scanner room and attaching a hose to channel the sound 

inside the bore (see fig. 1). The full setup consisted of the speaker system, optical fiber microphone (Phonoptics), function generator (Tektronix, AFG31002) and a 

PC for signal processing. All signals were recorded at 44.1 kHz sampling rate, filtered to 0.3-6 kHz and processed using Matlab and LabVIEW. 

The noise prediction was based on a linear time-invariant model, utilizing linearity between acoustic noise 𝑝(𝑡) and the scanner gradient input derivative 𝑔`(𝑡). In 

frequency domain, this is expressed as 𝑃𝑥/𝑦/𝑧(𝑓) = 𝐻𝑥/𝑦/𝑧(𝑓) ∙ 𝐺`(𝑓), where 𝐻𝑥/𝑦/𝑧(𝑓) represents a measured system transfer function6-8. 

A calibration sequence was designed for a 3T Philips system, consisting of triangular gradient pulses with a 0.14 ms rise time and 20 mT/m amplitude. 20 such 

blips were played out with a 3 s repetition time and used as trigger pulses (see fig. 2, black pulses). Firstly, these trigger pulses were followed by a single-gradient 

pulse, used to estimate the transfer functions. Next, the same pulse noise was predicted, to evaluate the maximum expected noise reduction values. Using an 

acoustic signal from the trigger pulses, the predicted noise was triggered to estimate the absolute latency and synchronize the system. In the final step, the anti-noise 

signal played out simultaneously with a scanner pulse (dashed lines in fig. 2). 

Two output corrections were needed to achieve noise cancellation. Firstly, a distortion introduced by the speaker-hose system to the sound was corrected by 

including channel equalization. The equalizer calculates the inverse transfer function of the system from the input of the scanner pulse and a recorded playback  

(indicated as EQ in fig. 2). Secondly, clock mismatch between the recording device and the scanner causes the output signals to dephase. This accumulative latency 

was estimated based on the train of 20 trigger pulses. All recorded signals were accordingly resampled. 

After the calibration steps, a prediction was applied to the components of a spoiled GRE sequence (see fig. 4, left). Theoretical maximum reduction values were 

estimated based on ideal equalizer and alignment conditions. The predicted anti-noise was triggered using the previously used trigger pulse. Live reduction data was 

acquired with 6 repetitions for each gradient coil. 

 

Results: A clock mismatch of 12.2 us per second was measured and used to resample the signals. The calibration pulse noise𝑃𝑥/𝑦/𝑧(𝑓), gradient input derivative 

𝐺`(𝑓) and the derived transfer functions 𝐻𝑥/𝑦/𝑧(𝑓) are shown in fig. 3. For the calibration pulses, estimated theoretical maximum reduction was 21 dB, assuming 

ideal conditions. The achieved live noise reduction for calibration pulses was 7.16 dB, 8.27 dB and 7.29 dB for X, Y and Z coils accordingly. 

For a spoiled GRE sequence, the estimated theoretical maxima were 9.99 dB, 13.52 dB and 9.85 dB for X,Y and Z coils respectively. Experimentally, this 

translated to mean values of 7.01± 0.31 dB, 6.42 ± 2.04 dB and 9.28 ± 0.26 dB reduction. An example acquisition is illustrated in fig. 5. 

 

Discussion: Initial results with PNC using a low cost setup demonstrated noise attenuation comparable to the setting achieved in repetitive sequences or with cost 

intensive gradient hardware upgrades2-3. 

Equalizer imperfections were the main obstacle in achieving the stated theoretical estimates. Iterative equalizers can be applied for improved channel correction, 

and MRI compatible speakers can be employed. This will be explored in future studies to further improve noise attenuation. 

Considerable noise reduction was achieved for individual gradient components. It is likely, however, that combining the gradients would result in attenuated 

reduction9. A segmentation of the transfer functions in terms or slew rate and/ or amplitude could help achieve stronger noise cancelling in future experiments. 

 

Conclusion: First results of Predictive Noise Cancelling show a promise of active noise attenuation. Despite system imperfections, up to 10 dB noise reduction was 

presented based on a linear time-invariant prediction model, and further optimized setups may achieve even higher attenuation based on the theoretical maximum. 

Predictive noise cancelling, therefore, bears great promise as a cost effective solution to improve patient comfort without the need for new or modified scanner 

hardware. 
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Figure 1. Experimental predictive noise cancelling setup. The speaker box was constructed by 

placing a woofer on the left side of the wooden cabinet (top left), filling walls with acoustic wool 

padding and sealing it with silicon (bottom left). On the right side of the box, a funnel was fixed 
to attach to a rubber hose (top right), transporting the sound into the scanner room (bottom 

right). 

 

 

Figure 2. Calibration sequence scheme. All pulses have 20 mT/m amplitude and 0.14 ms rise 

time. Black pulses are played out on all 3 coils simultaneously, and are used as an acoustic 

trigger. Coloured pulses represent single-gradient scanner pulses used to derive the transfer 
functions, while dashed lines under those indicate an anti-noise in the last calibration step. 

Equalizer (EQ) inputs are also indicated, where dashed pulse shows a speaker playback of the 

recorded trigger pulse. 

 

Figure 3. Derivation of the transfer functions 𝐻𝑥/𝑦/𝑧(𝑓) = 𝑃𝑥/𝑦/𝑧(𝑓) / 𝐺 `(𝑓). Calibration pulse 

noise 𝑃(𝑓) is illustrated on the left (blue), along with a gradient derivative 𝐺`(𝑓) of a triangular 

pulse (pink). Corresponding transfer functions are plotted in relative dB scale on the right. 

 

 

 

Figure 4. Spoiled GRE sequence gradient inputs (left). Measurement gradient was arbitrarily  

assigned to X coil, phase gradient to Y coil and slice selection gradient to Z coil. The 
corresponding noise prediction along with the original and the attenuated sequence noise is also 

shown (right).  Sequence TR/TE = 10.6/6.4 ms and total length - 10 s. 

 

Figure 5. Live FFE sequence noise reduction results. Sound intensities are plotted for scanner sequence components (blue) and for scanner noise with simultaneous anti-noise output (pink). Up to 90% 

signal intensity reduction is shown. The reference intensity was assumed as 𝐼0 = 1 pW/m2. 
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Synopsis: Acceleration techniques like SENSE have enabled significant decreases in scan time, but the G-factor penalty on SNR limits attainable accelerations. 

Wave-CAIPI lowers this G-factor by spreading aliasing and taking advantage of the coil sensitivity distributions. A high performance single-axis insert gradient is 

utilised to increase the attainable wave amplitudes and thereby increasing the effectivity of Wave-CAIPI. 

Simulations and 7T phantom & in-vivo acquisitions show significant improvements in G-factor when using Wave-CAIPI, especially when utilizing the higher 

performance of the insert gradient. Not only are the G-factors lower but also show increased spreading and lack hard edges, allowing for even faster acquisitions. 

 

Introduction 

In recent years, acceleration techniques like SENSE and GRAPPA have enabled significant decreases in scan time, but even with the advance of ultra-high field scanners and their 

increased SNR, the penalty on SNR from √R and G-factor limit attainable accelerations. 

Improved methods like CAIPI, BPE and Wave-CAIPI1 have been developed that try to lower this G-factor by spreading aliasing over the FOV and taking advantage of the coil sensitivity 

distributions. Previous work has predicted that Wave-CAIPI can benefit from using a high-performance insert gradient2, even when it only contains a single axis3. 

Purpose 

To reduce the G-factor penalty on SNR in highly accelerated scans by utilising Wave-CAIPI on a high performance single-axis head insert gradient, thereby allowing for even faster 

acquisitions without compromising on quality. 

Methods 

To study the effectivity of Wave-CAIPI with increased wave amplitudes on a single axis, simulations are performed and then validated in both phantom and in-vivo brain acquisitions 

on a 7T MRI scanner (Philips, Best, The Netherlands) with 32ch head coil (Nova Medical, Wilmington, USA). 

The chosen sequence is designed for SWI and consists of a whole-brain 3D GRE with a resolution of 0.8mm3 over a FOV of 256x192x256mm, with TR/TE/α/BW = 

43[ms]/20[ms]/14°/285[Hz]. The acquisition duration is reduced to 2min42sec by accelerating 16-fold, 4 times in both Y- &Z-axes, using SENSE and two types of Wave-CAIPI. 

Wave-CAIPI is created by introducing a FOV/2 shift and 10 periods of sinusoidal waves on both Y-& Z-axes. The Z-axis wave is given a 90° phase offset to produce a cosine during 

the readout. The whole-body gradient specifications limit the wave amplitude to 9 [mT/m] and that amplitude is therefore played out on the Y-axis. The insert gradient produces the Z-

axis wave and since previous work has shown that Wave-CAIPI efficiency improves with higher wave amplitudes4, the higher performance of the insert gradient is used to double the 

amplitude of the Z-axis wave to 18 [mT/m] in the simulations and phantom acquisitions. To remain under auditory limits, a factor of 1.7x and thus 15.3 [mT/m] waves are utilised in 

the in-vivo acquisitions. A secondary 1x reference acquisition is acquired for direct comparison with the higher performance waves. 

Reconstruction is performed using an in-house developed NUFFT-based pipeline implemented in MATLAB complemented by MRecon (GyroTools, Zurich, Switzerland) and BART5. 

The real-time scanner behaviour and all resulting gradient waveforms are reproduced and convolved with a GIRF6 captured previously using a field camera7 (Skope, Zurich, 

Switzerland). For scans that just utilise the whole-body gradients the resulting trajectory suffices, but the insert gradient produces a B0 offset when not positioned perfectly on iso-

center and therefore requires a PSF scan to measure and correct that offset. Sensitivity maps are calculated using ESPIRiT8 on a low-resolution reference acquisition. 18 iterations of 

CG-SENSE9 with L2-regularisation produce the final reconstruction.  

Simulations are created from a generated 3D phantom and acquired sensitivity maps. The phantom is multiplied by the sensitivities to produce ideal coil images. Noise is added to 

create a 14dB SNR and simulated K-space is calculated from those images using a NUFFT on trajectories taken from the reconstruction pipeline above. 

Finally, G-factor maps are created for all reconstructions using the pseudo multiple replica method10 that performed the entire reconstruction 50 times with additional simulated noise. 

Results 

The G-factor analysis results for the simulations, phantom and in-vivo acquisitions that are depicted in figure 2 to 4 respectively, show a consistent pattern that is quantified in the table 

of figure 5. 

The Wave-CAIPI acquisition shows very significant reduction in G-factor over the SENSE acquisition. The enhanced (1.7x or 2x) Wave-CAIPI acquisition consistently improves over 

the regular Wave-CAIPI acquisition and shows even lower G-factor values. The vendors SENSE implementation shows a similar pattern in G-factor to our SENSE implementation, 

but achieves slightly different results in which our implementation performs better on the phantom acquisition and the vendor SENSE shows favourable in-vivo G-factors. Exemplar 

slices show slight folding artefacts in the SENSE acquisitions, which are not visible in the Wave-CAIPI acquisitions. However, the phantom Wave-CAIPI reconstructions show a ghost 

in the readout dimension that increases with increasing wave amplitude. 

Discussion 

Wave-CAIPI shows significant and consistent improvements in all acquisition types, not only are the absolute G-factor values themselves lower, they also show geometrical spreading 

and therefore lack the hard edges that frequently cause visible artefacts. 

The enhanced performance of the insert gradient enhanced the effect of Wave-CAIPI by further lowering the G-factor and increasing the spreading. The increase in wave amplitude 

slightly increased an artefact in the phantom acquisition, probably due to the higher sensitivity for imperfections in the trajectory and coil sensitivities produced by the pipeline that is 

tailored to in-vivo data. The chosen wave frequency limited the in-vivo capability of the gradient insert due to auditory limits, but that is reducible by changing frequency and could be 

completely eliminated by going above 20khz. 

Conclusion 

Wave-CAIPI significantly reduces the G-factor penalty on accelerated scans. While the high-performance single-axis insert head gradient shows clear improvements of the performance 

of Wave-CAIPI in the studied sequence, faster acquisitions are now feasonable (with increased R and shorter readouts, such as EPI) and have even larger potential performance benefits. 
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Figure 1: Two photos of the utilized insert gradient; the left photo (A) shows the coil during 

construction with the integrated birdcage transmit coil exposed and the right photo (B) is taken with 
the coil on the patient table showing the inside of the 32-channel receive array. 

Figure 5: Table with quantified results of G-factor analysis from all types of simulations, phantom 

& in-vivo acquisitions. 

The three depicted metrics are the 5 percentile, mean and 95 percentile of G-factor values taken over 
their entire respective 3D volume. 

Each metric is also shown as a percentage change from the (vendor) SENSE acquisition. 

 

 

F i g u r e  5 :  T a b l e  w i t h  q u a n t i f i e d  r e s u l t s  o f  G - f a c t o r  a n a l y s i s  f r o m  a l l  t y p e s  o f  s im u l a t i o n s ,  p h a n t o m  

&  i n - v i v o  a c q u i s i t i o n s .  

T h e  t h r e e  d e p i c t e d  m e t r i c s  a r e  t h e  5  p e r c e n t i l e ,  m e a n  a n d  9 5  p e r c e n t i l e  o f  G - f a c t o r  v a l u e s  t a k e n  o v e r  

t h e i r  e n t i r e  r e s p e c t i v e  3 D  v o l u m e .  E a c h  m e t r i c  i s  a l s o  s h o w n  a s  a  p e r c e n t a g e  c h a n g e  f r o m  t h e  

( v e n d o r )  S E N S E  a c q u i s i t i o n .  

Figure 3: Results of the phantom acquisitions for four types of acquisitions; Vendor SENSE, 

SENSE, Wave-CAIPI 1x & Wave-CAIPI 2x from top to bottom, as marked in the figure. 

The 2x acquisition utilises the higher performance available with the insert gradient and doubles the 

Z-axis waves over the 1x acquisition. The left column depicts an exemplar image slice, the middle 
column the G-factors over that slice with colorbar below and the right column contains the histogram 

of G-factors from the entire 3D volume. 

Figure 4: Results of the in-vivo acquisitions for four types of acquisitions; Vendor SENSE, SENSE, 

Wave-CAIPI 1x & Wave-CAIPI 1.7x from top to bottom, as marked in the figure. 

The 1.7x acquisition utilises the higher performance available with the insert gradient and doubles the 

Z-axis waves over the 1x acquisition. The left column depicts an exemplar image slice, the middle 
column the G-factors over that slice with colorbar below and the right column contains the histogram of 

G-factors from the entire 3D volume. 

Figure 3: Results of the simulations for three types of acquisitions; SENSE, Wave-CAIPI 1x & 

Wave-CAIPI 2x from top to bottom, as marked in the figure. 

The 2x acquisition utilises the higher performance available with the insert gradient and doubles 
the Z-axis waves over the 1x acquisition. The left column depicts an exemplar image slice, the 

middle column the G-factors over that slice with colorbar below and the right column contains the 

histogram of G-factors from the entire 3D volume. 
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Synopsis: For high-resolution diffusion-MRI, strong gradients combined with fast readout are desired. In this study, we propose a gradient system architecture for 

such strong gradients and fast readouts without nerve stimulation by implementing a filter topology that allows for both low and high frequency gradient 

waveforms. Two gradient inserts with different specifications are realized and two proposed modulation strategies are implemented in the amplifier firmware. Field 

measurements demonstrated the desired dual-mode capability of the system. With one gradient insert, a gradient amplitude of 300 mT/m and slew rates well above 

10.000 T/m/s can be reached with only 500A&330V as amplifier output. 

 

Purpose: Diffusion-weighted MRI can probe the architectural configuration of tissue microstructure, yet requires very strong gradients, particularly when 

considering tissues with short T2 relaxation times. While whole body designs that facilitate gradients up to 300 mT/m have been developed 1, they suffer from 

relatively slow ramp times that avoid peripheral nerve and cardiac stimulation, and require a significant physical footprint. Moreover, as these designs are 

specifically targeted towards high field strengths, they are suboptimal during the echo planar imaging (EPI) readout. In this paper we propose a new gradient system 

architecture, for which typical gradient amplifier hardware can be employed. The proposed approach enables seamless switching between two modes, one for 

strong gradients and one for ultrasonic readout. The method is experimentally verified, demonstrating that a diffusion gradient followed by a 20 kHz readout is 

feasible and significantly reduces the sound pressure levels and nerve stimulation associated with an EPI readout. 

 

Methods: The proposed gradient system architecture, shown in Figure 1, consists of a typical gradient amplifier and a modified, distributed output filter. 

Additionally, the gradient amplifier modulation scheme is adapted to cater two modes of operation: one using conventional pulse-width modulation (PWM) with 

reference tracking, and one fixed frequency modified sine wave operation with amplitude control, to allow strong gradients and ultrasonic readout respectively. 

 

Combining a resonant filter with the gradient head coil results in a third-order LCL filter. By using a capacitor in parallel with the system's gradient coil, the filter is 

capable of handling DC current, which enables low frequency gradient waveforms. Additionally, the filter is tuned such that the resonance frequency is around 20 

kHz to allow an ultrasonic EPI readout, according to 

 

ωres =  √
𝐿1+𝐿2

𝐿1𝐿2𝐶
.           (1) 

 

By utilizing the amplifying characteristic of the resonance, the high slew rates (up to 10.000 T/m/s) for the 20 kHz operation are provided. Additionally, a hybrid 

feed-forward and feedback control method is proposed that significantly improves the performance of the overall system, as depicted in Figure 2. The first gradient 

coil was paired with an off-the-shelf gradient amplifier (Prodrive, Netherlands), Here, the proposed modulation strategies were implemented in the amplifier 

firmware to enable the amplifier to produce high frequency waveforms as well as low frequency gradient waveforms. The proposed gradient architecture was 

evaluated by measuring the gradient amplitude with a field camera (Skope, Switzerland). During these measurements, the setup was controlled by an external 

waveform generator that was triggered by the MR-system (Philips Achieva 7T, Netherlands). As a proof-of-principle and to ensure that the signals of the field 

camera do not become completely dephased by the typical long diffusion pulses, we used a relatively short “diffusion” pulse (1ms), followed by the 20 kHz EPI 

readout (10ms). 

 

Results: Two insert gradients were built, the first one with inductances of the Y- and Z gradient of 30.46 and 38.24 μH and efficiencies of 0.095 and 0.3 mT/m/A, 

and the second insert gradient with inductances of the Y- and Z gradient of 61.07 and 261.65 μH and efficiencies of 0.095 and 0.60 mT/m/A respectively. The 

frequency response function of the designed LCL filter for the input voltage to gradient insert voltage and current is shown in Figure 3. The voltage over the insert 

gradient is attenuated by a factor two for the low frequency region (below 1 kHz) and amplified at the resonance frequency of 20 kHz by a factor 21. Figure 4ab 

show the amplifier current for a diffusion gradient and ultrasonic readout, respectively. These measurements demonstrate that both the low frequency diffusion 

gradient as well as the high frequency readout currents can be provided to the gradient coil. Despite the high amplification factor of the resonant coil, we could 

reach steady-state of the silent EPI train in 0.5 ms due to the proposed control scheme. Figure 4c shows the measured field for a low diffusion pulse followed by the 

silent readout of 40 mT/m. Figure 5 presents the TE achievable for a given diffusion weighting (characterized by the b-value), leveraging the strong gradients and 

ultrasonic readout of the insert compared to state-of-the-art gradient setups. 

 

Discussion and Conclusion: We have demonstrated a setup which operates the gradient system in dual-mode, to generate a low frequency gradient pulse followed 

by an ultrasonic readout. The proposed control algorithm of the ultrasonic readout reduced the rise time of the field amplitude significantly, as can be seen in Figure 

5 by comparing the HF-startup time with the damped oscillation time at the end of the sequence (0.5 and 2.0 ms respectively). The control algorithm of the 

diffusion pulse can be further improved by tuning the control parameters. Depending on the properties of the gradient insert and the used amplifier, gradient 

amplitude of 300 mT/m at 500 A can be obtained for the Z-gradient, and both Y and Z gradients could be driven well above a 10.000 T/m/s during the silent EPI 

readout. The combination of wave encoding and EPI readout opens up avenues for high accelerations and resolution while reducing g-factor and artifacts 2. 
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Figure 1. Schematic overview of the distributed output filter of the gradient amplifier towards the gradient coil. Left, the commercial gradient amplifier (Prodrive) with manually removed output filter and 

updated firmware; second, the first stage of inductance to partially match the inductance of the gradient coil; third, the RF cage filter with limited voltage threshold; right, inside the magnet room the second 

part of matching inductor followed by the insert gradient coil with inductance (L) and parallel capacitor bank (C). 

 

 

Figure 2. Schematic overview of the proposed control methods, (a) for the pulse-width modulation (PWM) with reference tracking and (b) for the fixed frequency modified sine wave operation with 

amplitude control. 

 

 

Figure 3. Frequency response function of input voltage to gradient insert voltage and current 

with the resonance frequency at 20 kHz. 

Figure 4. Amplifier current for (a) a diffusion gradient and (b) ultrasonic readout. (c) Field as 

measured by the field camera for a diffusion gradient followed by ultrasonic readout. 

  

 

Figure 5. Diffusion weighting (𝑏 = 𝛾2𝐺2 (𝛿2 (𝛥 −
𝛿

3
) +

𝜎3

30
− (

𝛿𝜎2

6
)), with G=diffusion pulse gradient 

strength, Δ=separation between pulses ,δ=pulse duration, σ=rise time) vs echo time (TE) for different 

setups. FOV=265 mm, resolution=2 mm, no partial Fourier. The insert leverages the 300 mT/m 
gradient strength and 1300 T/m/s slew rate for diffusion weighting, and a proof-of-principle ultrasonic 

readout during an EPI train with body gradients (dutation = 23 ms). The other setups have slew rate 

83.3 T/m/s and 200 T/m/s, respectively, with convetional readout (duration = 63.5 ms).
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Synopsis: Conventional brain segmentation approaches typically require high resolution 3D-T1 weighted images, which are often unavailable in clinical multiple 

sclerosis (MS) protocols. Recently, SynthSeg was released which allows 3D-FLAIR to be used for segmentations. This study compared segmentation on 3D-

FLAIR with SynthSeg to segmentation performance in the same patients on 3D-T1 (SynthSeg, FastSurfer and SAMSEG). Brain segmentation was performed on 

100 patients with 3D-T1 and 3D-FLAIR images from research and clinical datasets. ICC results showed good comparability for brain tissue, ventricle and grey 

matter assessments in research data. In clinical data only good comparability was found for ventricle segmentation.  

Purpose: Accelerated brain tissue loss occurs from the earliest stages in multiple sclerosis (MS) and is associated with disability and cognitive impairment1. Brain 

volumetric measurements on MRI provide important imaging markers for disease progression and evaluating therapeutic effects2. To date, these imaging markers 

are primarily used as outcome measures in research and clinical trials. Clinical protocols commonly focus on 3D-FLAIR over 3D-T1 imaging, while most 

segmentation methods are only compatible with the latter3. To overcome this issue, new segmentation approaches have been developed that work on other MRI 

contrasts and lower resolutions. The recently developed convolutional neural network (CNN)-based segmentation software SynthSeg showed promising results in 

brain tissue segmentation of contrasts other than 3D-T1, but performance on 3D-FLAIR remains to be validated4. The aim of this study was to investigate 

agreement between 3D-T1 weighted brain volumetrics and SynthSeg-based volumetrics on 3D-FLAIR. 

Methods: To evaluate the agreement of brain volumetric measurements on 3D-T1 and 3D-FLAIR images, 100 MRI examinations from 100 MS patients were 

selected. MRI data were acquired on two 1.5 T systems (Siemens Magnetom Sola, Siemens Avanto) and three 3.0 T systems (Siemens Magnetom Vida, GE 

Discovery MR750, GE Signa HDxT). From each scanner, 20 MRI examinations were included. The dataset contained both research and clinical datasets. Research 

imaging protocols contained a 3D-T1 weighted sequence (FSPGR) without contrast and 3D-T2 weighted FLAIR sequence. Clinical imaging protocols contained a 

3D-T1 weighted sequence with or without contrast (T1 SPACE FS, T1 FLASH) and a 3D-T2 weighted FLAIR sequence. Segmentation was performed on 3D-T1 

weighted images using FastSurfer, SAMSEG (cross-sectional pipeline for MS patients) and SynthSeg.4-6 3D-FLAIR weighted images were segmented with 

SynthSeg only. Brain, ventricular, cortical grey matter (GM), total deep grey matter (DGM) and thalamic volumes were compared between 3D-T1 and 3D-FLAIR 

based segmentations with calculation of the intraclass correlation coefficient (ICC; two way-mixed model, absolute agreement). Thalamic volume was assessed in 

addition to DGM given its known strong clinical predictive value in MS.7 Analyses were performed separately on the research data (n=40, GE scanners) and the 

clinical data (n=60, Siemens scanners). An example of a research and a clinical MRI exam with their corresponding segmentations are shown in Figure 1. 

Results: In the research data, good (ICC>0.8) agreement was found between 3D-FLAIR segmentation and all 3D-T1 segmentations for most assessed brain 

structures (Table 1). Only poor agreement was found for SAMSEG on brain and thalamic volumes. In clinical data, ICC calculations showed good agreement 

between SynthSeg on 3D-FLAIR and SynthSeg on 3D-T1 for all measures, i.e. brain, ventricle, cortex, deep grey matter and thalamic volumes (Table 1). However, 

agreement between SynthSeg on 3D-FLAIR and 3D-T1-based FastSurfer and SAMSEG segmentation was poor for cortical and deep grey matter volumes. 

FastSurfer and SAMSEG on 3D-T1 displayed lower volumes of these structures compared to the 3D-Flair segmentation (Figure 2). Total brain volume agreement 

for FastSurfer with SynthSeg on 3D-Flair was good, but poor for SAMSEG. Only ventricular volumes were highly comparable between methods in the clinical 

dataset. FastSurfer missed parts of the brain in some cases with poor grey/white matter contrast, an example is shown in Figure 3. 

Discussion: In this study, SynthSeg was used to determine volumetric measurements on 3D-FLAIR images, which were compared to 3D-T1 measurements using 

three automated segmentation approaches. SynthSeg achieved high agreement between 3D-T1 and 3D-FLAIR based segmentation in both research and clinical 

datasets. However, specific variations in agreement were observed, showing especially a lower agreement with SAMSEG. The segmentations of FastSurfer and 

SAMSEG may not have been the best reference in the clinical dataset, since these methods typically require high quality images with sufficient grey matter/white 

matter contrast, which might not always be the case for the 3D-T1 in clinical protocols. In the 3D-T1 and 3D-FLAIR images from research protocols, a high 

agreement was found between 3D-T1 segmentations (FastSurfer and SynthSeg) and SynthSeg 3D-FLAIR segmentation for all structures, while SAMSEG showed 

poorer agreement. Therefore, 3D-FLAIR segmentation with SynthSeg is a promising approach for volumetric measurements in MS patients, but further validation 

is required.   

Conclusion: Brain, cortical, ventricular and deep grey matter volume assessments on 3D-FLAIR weighted images with SynthSeg show good agreement to 3D-T1 

segmentation with FastSurfer and SynthSeg in high quality research data. In clinical data only ventricular volume could be reliably measured on 3D-FLAIR 

weighted images in MS patients. Future studies should validate this finding to enable FLAIR-based volumetric measurements in clinically acquired MRI data.  
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Figure 1. Example of brain segmentation on research and clinical quality MRI with various automated segmentation approaches. 

 

 

 

 

 

 

 

 

 

Table 1. Absolute agreement (ICC) between 3D-FLAIR and 3D-T1 based volumes of brain, ventricles, cortex, deep grey matter (DGM) and thalamus.   

Figure 2. Volumes of brain, ventricle, cortex, DGM and Thalamus for the four assessed segmentation methods. Paired t-tests SynthSeg on 3D-FLAIR vs. other methods: ns = not significant, *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001, Bonferroni corrected.  

 

Figure 3. Example of brain segmentation on clinical MRI data where FastSurfer misses part of the brain and cortex.  

 

 

 

Reference 

Research data (n=40) Clinical data (n=60)  

ICC SynthSeg 3D-FLAIR  ICC SynthSeg 3D-FLAIR  

Brain Ventricle Cortex DGM Thalamus Brain Ventricle Cortex DGM Thalamus 

FastSurfer 3D-T1 0.952 0.989 0.832 0.862 0.867 0.909 0.939 0.134 0.495 0.772 

SAMSEG 3D-T1 0.733 0.883 0.921 0.873 0.581 0.721 0.956 0.579 0.552 0.552 

SynthSeg 3D-T1 0.994 0.988 0.800 0.959 0.935 0.969 0.996 0.897 0.985 0.978 
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Synopsis: In this clinical study, we combined different (metabolic) MRI sequences at 7T to characterize focal epileptogenic lesions, and uncover potential metabolic markers that 

could help identifying the culprit lesion in MRI-negative epilepsy patients. Using QSM, we observed increased iron deposition in the affected hippocampus of two HS patients that 

was not found in the contralateral hippocampus, neither in a suspected HS patient with no abnormal tissue, nor in matched healthy volunteers. No increased iron deposition was found 

in patients with FCD or matched healthy volunteers. No significantly different metabolite ratios between patients and healthy volunteers were found using SV 1H-MRS.  

 

Introduction: Epilepsy surgery is an effective therapy for drug-resistant epilepsy1,2, and surgery is more successful in patients with epileptogenic lesions detected with structural 

MRI. About 20-30% of patients with focal epilepsy show no structural abnormalities, i.e., are MRI-negative3. Surgery can be effective if an epileptic focus can be defined in another 

way. Metabolic MRI can visualize underlying metabolic pathways associated with disease, especially when applied at ultrahigh field with its increased SNR and spectral dispersion to 

help us identify epileptogenic lesions that cannot be detected with structural MRI.  

Several potential metabolic markers for epileptogenic lesions that can be imaged with metabolic MRI have been reported in recent years. For instance, glutamate, associated with 

mitochondrial and metabolic injury inducing seizures in patients with epilepsy, and locally increased concentrations have been found in MRI-negative epileptogenic lesions.4 Also 

iron accumulation, a potential marker of oxidative stress, has been found in hippocampal sclerosis (HS) and focal cortical dysplasia (FCD) using histopathological staining.5 The 

metabolic phenotype – or ‘profile’ – of epileptogenic lesions will likely consist of a combination of metabolites, some of which may not even have been found using in vivo imaging 

techniques. 

In this preliminary clinical trial, we aim to find (combinations of) metabolic markers of epileptogenic lesions that can be detected with 7T metabolic MRI, using glutamate-CEST 

(GluCEST), quantitative susceptibility mapping (QSM) and single-voxel (SV) 1H MRS, and validate these with histopathology. This abstract discusses the imaging results of QSM 

and 1H MRS in the first five patients compared to five healthy volunteers.  

 

Methods: Five patients (aged 23-48 years; three females) and five healthy volunteers (aged 24-27 years; two females) were included. All patients were diagnosed with focal epilepsy 

with an epileptogenic lesion on structural MRI and/or positron emission tomography and were scheduled for surgical treatment. This clinical trial was approved by our IRB; all 

participants gave written informed consent.   

MRI examination 

All participants underwent one 7T (Philips, Best, the Netherlands) MRI examination with a 32-channel head coil (Nova Medical) the day prior to their surgery. Next to QSM and SV 
1H MRS (sLASER), a high-resolution T1-weighted sequence was acquired for FOV planning; see Table 1 for acquisition parameters. The FOV in healthy volunteers was matched 

with the lesion location in the patients; for MRS, a TE of 36 ms was used in HS patients (N=3) and matched volunteers, and a TE of 110 ms was used in the FCD patients (N=2) and 

matched volunteers. Final diagnosis was based on histopathology.  

Post-processing & data analysis 

QSM data was post-processed with the SEPIA tool using Laplacian-based phase unwrapping, variable-kernel SHARP background field removal and the iLSQR method for 

computing the susceptibility maps. MRS data was analyzed using LCModel with a simulated basis set.6 No correction for T1 or T2 relaxation times was applied. Metabolite ratios with 

respect to total creatine, with a Cramér Rao Lower Bound of <20% for N≥2 per different TE were reported (Figure 2; Table 2). QSM images were analyzed qualitatively for 

differences in iron deposition; a Wilcoxon-signed rank test was used to compare differences in metabolite ratios between epileptogenic lesions and healthy brain tissue.  

 

Results: 

QSM 

The two patients with histopathologically confirmed HS showed increased iron deposition in the affected hippocampus, while the third HS patient did not show abnormal iron 

deposition in either hippocampus (Figure 1); this patient however turned out not to have abnormal tissue. None of the matched healthy volunteers nor the patients with FCD showed 

increased iron deposition in either hippocampus or respective lesions of interest. 

1H MRS 

Some differences in metabolite ratios between HS and the contralateral hippocampus in the two histopathologically confirmed HS patients could be seen, though not statistically 

evident. We also found no evident differences in metabolite ratios between HS patients and healthy volunteers. This same result was found in the FCD patients and their matched 

healthy volunteers. 

 

Discussion & conclusion: In this clinical study, we combined different (metabolic) MRI sequences at 7T to characterize focal epileptogenic lesions, and uncover potential metabolic 

markers that could help identifying the culprit lesion in MRI-negative epilepsy patients. Using QSM, we observed increased iron deposition in the affected hippocampus of two HS 

patients that was not found in the contralateral hippocampus, nor in a patient with suspected HS with no abnormal tissue, nor in matched healthy volunteers. These results support 

previous findings of increased iron deposition using susceptibility-weighted imaging and histopathology in mesial temporal lobe epilepsy (TLE)5,7; however, contrary to previous 

histopathology-based literature, no increased iron deposition was found in patients with FCD. Two studies at 7T using MRS in epilepsy patients showed variable metabolite ratios: 

both increased (FCD) and ‘normal’ (TLE) GABA levels were found, and no differences in glutathione and glutamate/glutamine.8,9 The same lack of statistically significantly different 

metabolite ratios was found in our five patients; however, our very small sample size precludes any final conclusions. Ongoing patient inclusion will increase our sample size, 

allowing for more robust statistical analyses of our QSM and MRS data. Combining these with planned GluCEST data acquisition in the same patients could lead to an even stronger 

profiling of the metabolic phenotype of epileptogenic lesions. 
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Figure 1: QSM images of all three patients with suspected HS, slice location indicated by yellow lines; HS patients 1 and 2 were confirmed with histopathology and show iron deposition in the right 

hippocampus tail (A) and the left hippocampus head (B), respectively, indicated by yellow circle, while the 3rd patient shows no difference / abnormal iron deposition between hippocampi (C). 

 

Figure 2: Example of fitted spectra of patient with HS (A) and patient with FCD (B). 

 

Table 1: Acquisition parameters; * = flow compensated gradient echo sequence. 

 

 

Table 2: Fitted metabolite ratios to total creatine with Cramér Rao Lower Bounds <20% for N≥2 per different echo time. * = echo time of 110 ms; Asp = aspartate; tCr = total creatine; Gly = glycine; Glx = 

glutamate + glutamine; GSH = glutathione; mI = myo-inositol; tCho = total choline; NAA = n-acetylaspartate; Tau = taurine ; Scyllo = scyllo-inositol. 
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Synopsis: Laminar-specific fMRI with CBV-sensitive VASO is valuable for neuroscientific questions on hierarchical information processing.  

While VASO fMRI has already proven its utility in other brain areas, it has not yet been successfully applied in the auditory cortex due to several additional 

technical challenges in this region. Here, we explore multiple sequences and their effectiveness to mitigate these challenges. Our purpose is to develop an 

experimental setup that future neuroscientific studies can be built on. Ultimately, we found a stable parameter set for the usage of layer-fMRI VASO in the auditory 

cortex and validated it in a group of participants. 

 

Purpose: Laminar-specific fMRI with blood volume sensitive VASO methods allows neuroscientists to address research questions of hierarchical information 

processing across brain areas without unwanted large draining vein effects.  

While layer-fMRI VASO has been used for visual and sensory-motor areas before, its application in the auditory system is challenged by many sequence constraints 

(Fig. 1): 

I. Inflow contaminations by non-nulled blood; 

II. Limited B1
+-efficiency for the inversion of z-magnetization; 

III. Physiological noise variation across segments in the common VASO 3D-EPI acquisitions;  

IV. Evolution of non-steady-state magnetization in inversion recovery sequences with silent gaps; 

V. Generally low sensitivity compared to GE-BOLD, due to the lack of signal amplification at the large draining veins. 

The purpose of the study was to explore a wide parameter space of advanced sequence approaches that can mitigate these challenges. We sought to find a good 

parameter set for performing layer-fMRI experiments in the auditory cortex. The sequence approaches that we investigated include: 

1. 2D-EPI, 3D-EPI1, and MB-EPI-VASO2; 

2. Multi-shot and single-shot schemes for GRAPPA auto-calibration signal data3,4; 

3. Multiple orientations (coronal vs. sagittal) and timing (faster and slower than cardiac cycle); 

4. Advanced adiabatic inversion pulses with B1
+-insensitive adjustable inversion efficiency5 and non-adiabatic Mz-’rest’ pulses6.  

 

Methods: Scanning was performed on a MAGNETOM “classic” 7T scanner (Siemens Healthineers) with MRI-compatible earbuds (Sensimetrics) for presentations 

of sounds in the scanner. For simultaneous acquisition of BOLD and VASO, an SS-SI-VASO sequence was used7,8.  

A total of 21.5 hours of scanning was done:  

● Six hours of phantom scanning was done to validate the correct implementation of the above mentioned sequence approaches.  

● 7.5 hours of in-vivo scanning across 4 sessions was performed to find optimal parameters (Fig. 1). 

● Four two-hour sessions were performed to validate the stability of the chosen sequence approach (Fig. 2) in experienced and in naive participants.  

The spatial resolution was between 0.8-0.9 mm iso, with readout TRs of 0.77-1.70 s and inversion delays of 0.75-0.90 s, resulting in BOLD-VASO. 

Functional runs of the chosen sequence consisted of 20 TRs without auditory stimulation, alternating with 20 TRs of sounds. Thirteen blocks were presented per run, 

resulting in a total duration of approximately 13 minutes per run. The sounds were described by the participants as “chipmunks from space” (task recording: 

https://youtu.be/TGX_Ulbv9wA). The scan protocol pdfs are available on Github (https://layerfmri.page.link/auditory_VASO_pdfs). We are happy to share the 

sequences used in this work via SIEMENS C2P. Data processing: Motion corrected (SPM) data were sorted by contrast and corrected for BOLD contamination 

(LayNii). Equi-volume layerification was performed with LN2_LAYERS9. Block design activation z-scores were quantified with FSL Feat and are presented as an 

overlay to the inherently T1-weighted mean VASO images (Fig. 3-4).  

 

Results and Discussion: During the first ten hours of scanning, we found that each and every one of the challenges in layer-fMRI VASO at the auditory cortex can 

be partially accounted for by means of advanced sequence approaches and FOV compromises. We tested the reproducibility of our findings with 2D and 3D acquisition 

protocols of BOLD and VASO by applying the identical sequence and task settings in the same volunteers in four additional two-hour sessions. We find that both 

acquisition approaches (2D and 3D) and contrasts (VASO and BOLD) reveal significant activation in the primary auditory cortex (Fig. 3). Layer-profiles of VASO 

have the largest activation in slightly deeper cortical depths compared to BOLD. In the BOLD data, the signal increases towards the superficial surface. The results 

are consistent across sessions and participants (Fig. 4). 

 

Summary and Conclusion: While layer-fMRI VASO has become popular in many cortical areas, until now it has never been successfully applied in the human 

auditory cortex. This is in contrast to GE-BOLD readouts, which have been applied in the auditory cortex with success already 10, 11. Here, we described why VASO 

layer-fMRI is so challenging in this area and we present a combination of sequence approaches as well as a good parameter set for successful layer-fMRI VASO 

without venous biases in the auditory cortex. This study has built the groundwork that future neuroscience-focused application studies can be based on.  
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Figure 1: Selected challenges of performing layer-fMRI VASO in the auditory cortex at 7T:  

The blood vessels close to the auditory cortex are challenging on so many levels. A) They result in dominating inflow contaminations, B) they impose physiological noise within the GRAPPA auto calibration 
signal, C) they evoke signal changes that are in the order of magnitude as structural and functional VASO contrast, D) common approaches that would minimize these effects impose other VASO-related 

problems. 

 

 
Figure 2: Schematic sequence diagram and the adaptation for VASO application in the auditory cortex at 7T:  

The sequence setup that was found to be most suitable is an axial acquisition with spin-reset pulses at the end of each readout. A TR-FOCI pulse with phase skip was used for efficient inversion of a single 
channel head-Tx NOVA coil. Readout blocks were kept as short as possible at the cost of coverage. The inherent silent sequence dead times in VASO were exploited for auditory task presentation.  

 

 
Figure 3: Representative activation results 

Activation maps of GE-BOLD and VASO for 3D-EPI and 2D-EPI (no SMS). We find that the fast protocol with readout durations of 700ms and a thin slab with 12 slices at 0.9mm iso can detect significant 

activation changes. For BOLD, z-scores are generally larger with 2D-EPI in the activation maps, while for VASO, z-scores are larger for 3D-EPI. As expected, layer-profiles for GE-BOLD are slightly shifted 
towards the surface. 

 

 
Figure 4: Stability of VASO activation across 4 participants 
It can be seen that the sequence approaches investigated here provide enough sensitivity to provide layer-fMRI results in the auditory cortex. Two of the participants were naive to fMRI scanning and two of 

them were experienced fMRI participants. There is an indication that 3D-EPI provides more activation for VASO than 2D-EPI. And 2D-EPI provides more activation for BOLD than 3D-EPI. VASO is less 

sensitive than BOLD.  
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Synopsis: Four-dimensional (4D) respiratory-resolved imaging is crucial for managing respiratory motion in radiotherapy, enabling irradiation of highly mobile 

tumours. However, acquiring high-quality 4D-MRI requires long acquisition (typically ≥5 minutes) and long iterative reconstructions, limiting treatment efficiency. 

Recently, deep learning has been proposed to accelerate undersampled MRI reconstruction. However, it has not been established whether deep learning may 

reconstruct high-quality 4D-MRI from accelerated acquisitions. This work proposes a small deep learning model that exploits the spatio-temporal information present 

in 4D-MRI, allowing to split the reconstruction into two separated branches, enabling high-quality retrospectively-accelerated 4D-MRI acquired in ~60 seconds and 

reconstructed in 16 seconds. 

 

Introduction:  

Four-dimensional (4D) respiratory-resolved imaging is crucial for managing respiratory motion in radiotherapy, enabling accurate irradiation of highly mobile tumours1, and facilitating 

treatment adaptation based on daily motion2. However, obtaining high-quality 4D-MRI requires long acquisition (typically ≥5 minutes) and long iterative reconstructions limiting 

treatment efficiency. Recently, deep learning (DL) has been proposed to accelerate undersampled MRI reconstruction3, demonstrating its potential also for 4D-MRI4. However, it has 

not been established whether DL may reconstruct high-quality 4D-MRI from accelerated acquisitions.  Reconstructing complete 4D-MRI volumes with a single model requires 

performing 4D convolutions, which is an expensive operation that may result in an overly large model, e.g., >100M trainable parameters. Training such large models requires specialized 

hardware and large training datasets while being prone to overfitting. Previous research5,6,7 showed that separating spatial and temporal information is a powerful technique, leading to 

efficient DL architectures. We propose using a model that exploits the spatio-temporal information present in 4D-MRI, allowing to split the reconstruction into two separated branches. 

Also, we perform 2D convolutions rather than training a single model that performs 3D convolutions. Such models have few parameters, leading to low memory usage, fast inference, 

and low risk of overfitting. We investigate the performance of 2D+t models, studying whether they may enable high-quality accelerated 4D-MRI acquisition and reconstruction. 

Materials and methods:  

Data preparation: Twenty-seven patients with lung cancer included in an IRB-approved study were imaged in free-breathing during Gadolinium injection on a 1.5T MRI (MR-RT, 

Philips Healthcare) using a fat-suppressed golden-angle radial stack-of-stars T1-w GRE thorax MRI for approximately five minutes (resolution=2.2x2.2x3.5mm3, 

FOV=350x350x270mm3, slice direction=feet-head). K-space was retrospectively sorted in 10 respiratory bins based on the relative amplitude of the self-navigation signal present in 

radial k-space8. Complex XD-GRASP9 reconstructions with total variation over the respiratory phases (λ=0.03) served as the target image. Accelerated complex NUFFT-adjoint images 

were reconstructed10 by undersampling the sorted bins with acceleration factors R4D=1, 2, 4, 8, and 10, simulating an acquisition of approximately Tacq=300, 150, 60, 30, and 25 seconds 

long, respectively. This corresponded to an undersampling factor per bin of RNyquist = 4, 8, 16, 32, and 40, respectively. For evaluation purposes, we computed deformation vectors 

fields (DVFs) between every respiratory phase and the end-exhale state using a free-form deformation algorithm11.  

Model architecture: The proposed model will reconstruct a 2D+t respiratory-resolved volume y with np phases using a spatial and a temporal branch. The spatial branch learns a volume 

Ψ by performing 1×cx×cy complex convolutions, while the temporal branch learns a volume Ξ by performing np×1×1 complex convolutions. The 4D reconstruction is then achieved by 

learning yt+1=yt+ΨΞ for every slice (Figure 1). We implemented an iterative model12 with residual connections between yt+1 and yt, using four iterations to learn complex XD-GRASP 

reconstructed slices from complex NUFFT-reconstructed slices of 4D-MRI. Each iteration used a spatial and a temporal branch with five complex convolution layers, employing a 

cardioid non-linear activation function13 (cx=cy=3). In total, the model has approximately 238,000 trainable parameters.  

Training and experiments: Ten models with identical architectures were trained on axial and sagittal slices, one for every undersampling factor R4D. Every model was trained on 17 

patients, evaluated on five, and tested on five other patients. Models were optimized using the AdamW optimizer (lr=10-3, weight-decay=10-4) with a batch size of 3, minimizing the 

hybrid magnitude SSIM/⊥-Loss14 for 20 epochs. 

Evaluation: Models were evaluated on all patients in the test set using the magnitude SSIM of the full 4D reconstruction compared to the XD-GRASP reconstruction and the end-point 

error (EPE) of DVFs obtained with the free-form deformation against the XD-GRASP DVFs. Statistical significance (p<0.05) was established using a paired t-test. 

Results and discussion:  

The models were trained in ~6 hours using ~18GB memory, and inference took ~16 seconds for full 4D-MRI. Using the proposed deep learning model significantly improved image 

quality (Figure 2), demonstrating that spatio-temporally decomposed models can effectively reconstruct high-quality 4D-MRI. Compared to XD-GRASP, the average SSIM of non-

accelerated 4D-MRI (R4D=1) increased from 0.82±0.01 (μ±σ) using NUFFT reconstructions to 0.92±0.02 with our model. Image quality is significantly increased for accelerated 

reconstructions (Figure 3). For R4D=4, the acquisition time decreased to ~60s, while the mean EPE decreased from 1.80±0.92 mm for NUFFT reconstructions to 0.85±0.43 mm (Figure 

4), although blurring can be observed in the DL reconstructions. Using R4D>4 reduces reconstructed image quality and shows decreased motion magnitude. However, considering an 

EPE<1mm as clinically acceptable, reconstructions up to R4D=4 may be justified, allowing for accurate motion estimation with a retrospective acquisition time Tacq≈60s. No significant 

differences were found between axial and sagittal reconstructions for motion estimation. However, models evaluated on axial images show higher image reconstruction quality than 

models evaluated on sagittal images (Figure 5). Future work will investigate model performance on prospectively undersampled MRI and comparison to not spatio-temporally 

decomposed models. Using high-quality accelerated 4D-MRI could shorten the acquisition time, increasing patient comfort and improving treatment throughput. Moreover, it could 

enable accelerated high-quality time-resolved imaging15. 

Conclusion:  

We have presented a small deep learning model for 4D-MRI reconstruction that splits the spatio-temporal information into two separated branches. Retrospectively-accelerated 4D-

MRI (Tacq≈60s) was reconstructed in 16s with high quality, enabling accurate motion estimation compared to XD-GRASP (EPE<1mm). 
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Figure 3: Example reconstruction with R4D=4. Here, a patient (male, 72 years old, 

T4N1M0 small-cell carcinoma) from the test set is shown. Top row shows the 

NUFFT-adjoint reconstruction, middle row the XD-GRASP reconstruction, and the 

bottom row shows the deep learning reconstruction. The acquisition time was 

approximately 1 minutes. Average SSIM increased from 0.63 using a NUFFT-adjoint 

reconstruction to 0.87 with DL reconstructions compared to XD-GRASP, while the 

EPE decreased from 1.87 mm to 1.10 mm. 

Figure 2: Example reconstruction with R4D=1. Here, a patient (female, 71 years 

old, T3N0M0 squamous cell-carcinoma) from the test set is shown. Top row shows 

the NUFFT-adjoint reconstruction, middle row the XD-GRASP reconstruction, and 

the bottom row shows the deep learning reconstruction. The acquisition time was 

approximately 5 minutes. Average SSIM increased from 0.81 using NUFFT adjoint 

reconstructions to 0.94 with DL reconstructions compared to XD-GRASP, while the 

EPE decreased from 0.98 mm to 0.38 mm. 

Figure 4: Deep learning results. Comparison between NUFFT-adjoint reconstructed 

4D-MRI (Adjoint) and 4D-MRI reconstructed with the proposed deep learning model 

(DL) for multiple undersampling factors R4D. Deep learning significantly increases the 

SSIM and reduces the EPE compared to XD-GRASP for accelerated and non-accelerated 

MRI. 

Figure 5: Orientation comparison. Comparison between deep learning models 

evaluated on axial images and models evaluated sagittal images for multiple 

undersampling factors R4D. For motion estimation, there is no difference between the 

two orientations. Axial models show higher image quality compared to XD-GRASP at 

high undersampling factors (R4D>1) than sagittal reconstructions. 

Figure 1: Model architecture. The model uses a complex 2D+t volume y0 with np respiratory phases. Then, one branch extracts temporal information in a volume Ξ by performing 

np×1×1 complex convolutions, while the other branch extracts a volume Ψ containing spatial information by performing 1×3×3 complex convolutions. The final output of one 

iteration is yt+1=yt+ΞΨ. In total, four iterations were used. 
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Synopsis: Pessary treatment for pelvic organ prolapse (POP) has a success rate of only 63% and its working mechanism remains unclear. This study 

applies upright MRI to gain insight into pessary. Patients were scanned in supine and upright position. The pessary was located under the inferior pubic 

bone in 7 out of 9 patients in upright position, opposed to 1 out of 9 in supine position. This indicates that the pubic bone does not (solely) contribute 

to the supporting mechanism. The use of upright MRI contributes to knowledge about the working mechanism of the pessary. 

 

Introduction: Pelvic organ prolapse (POP) is a common condition in elderly women, with a prevalence of 11% between the ages of 45-85 years in 

the Netherlands1. A pessary is a relatively simple and cheap device to treat POP. However, the success rate after 3 months is only 63%2. Success factors 

on pessary fitting are described, but are mainly based on global physical factors (e.g. previous hysterectomy, overweight, hiatal circumferences). A 

universally accepted view on the working mechanism of a pessary, including support tissue, is lacking. This is most easily proved by the variation in 

the position and effect of a pessary portrayed in scientific papers and patient information folders. Little research has been done to better understand the 

actual position of the pessary and the location of the prolapsed organs before and after pessary insertion. Since physical examination, typically done 

in supine position, is unable to present us with a 3D multicompartment view, imaging is needed.  

Magnetic Resonance Imaging (MRI) allows for multicompartment pelvic imaging. There are currently a few low-field MRI scanners available that 

provide the opportunity to scan patients in different body positions3,4. Since the amount of prolapse in upright position is significantly larger than in 

supine position5, this technique is crucial for a realistic evaluation of the working mechanism of a pessary.  

This research aims to determine the position and orientation of the pessary in patients with POP in upright position and compare this to the position 

and orientation in supine position, to obtain a better understanding of its working mechanism. 

 

Methods: In this study in total 15 patients wearing their ring shaped pessary for at least three months will be scanned in upright and supine position 

using a 0.25T MRI scanner (Esaote SpA, Genoa, Italy). Until now, 9 patients were scanned, all between 16:00 and 18:004, and emptied their bladder 

15 minutes before the scan. A multi-slice T2-weighted fast spin echo was acquired in the sagittal plane, using the following parameters: TE/TR: 

25/3480 ms, flip angle: 90°, reconstructed resolution: 1.3×1.3 mm2, slice thickness: 5 mm, number of slices: 11, total scan time: ≈2 min.  

On the acquired scans the distance between the most inferior part of the pessary and the Pelvic Inclination Correction System (PICS) reference line6 

was measured (dpess) and compared between upright and supine position using the Wilcoxon signed-rank test. Furthermore, the angle between the 

pessary and the PICS (αpess) was measured and compared between upright and supine position.  

 

Results: As can be seen in Figure 1, the pessary can be clearly seen on the MR image. The figure also shows an overview of the drawn lines and 

calculated variables. The PICS line originates at the inferior pubic point and descends from there in 8 out of 9 patients. This means that when the 

pessary is located lower than the PICS line, the pessary is also located lower than the inferior pubic point.  

Figure 2a shows an overview of dpess of all patients in supine and upright position. It can be seen that in upright position the pessary is located lower 

in all patients, with a median (min, max) descent of 1.8 (1.2, 2.6) cm (p = 0.008). The lowest point of the pessary is located lower than the PICS line 

in1 out of 9 patients in supine position, and in 7 out of 9 patients in upright position. A scan be seen in Figure 2B, there is only a slight change in αpess 

between supine and upright position, varying from increase to decrease. The median (min, max) difference between upright and supine is -5 (-16, 1) 

degrees (p = 0.16). 

 

Discussion: The difference in αpess between supine and upright position is small, but there is a significant descent of the pessary observed in all patients 

in upright position. Furthermore, the lowest point of the pessary is located lower than the inferior pubic point in 7 out of 9 patients, indicating that 

there has to be at least an additional support mechanism of the pessary than solely the pubic bone, as was hypothesized before7. This phenomenon can 

only be observed when patients are in the upright position, indicating that imaging in this position is of importance for further evaluation of the working 

mechanism of the pessary in patients with POP.  

This research was performed using 2D sagittal images on which the PICS and the pessary angle were used as parameters to analyze the pessary position. 

3D analysis would enable research into additional parameters that may be useful to investigate the working mechanism of the pessary, such as the 

position and orientation in the coronal and transverse plane and the relationship between the pessary position with reference to the pelvic organs. 

 

Conclusion: This research showed a descent of the pessary in upright body position compared to supine, and the difference in position relative to the 

PICS line and inferior pubic point. A pessary position lower than the inferior pubic point indicates that the pubic bone does not (solely) contribute to 

the support of the pessary. Upright MRI gives more insight into the working mechanism of a pessary in patients with POP in its most relevant body 

position. 
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Figure 1. Sagittal MR scans of a patient with a ring pessary in supine and upright position. The pessary line and PICS line are used to measure dpess 

and αpess. The pessary is clearly visible and descends in upright position compared to supine. 

 

 

 

 

Figure 2.  Measured parameters of all patients in supine and upright position a) The distance of the pessary to the PICS reference line. The pessary is 

located lower in upright position in all 9 patients. The lowest point of the pessary is located lower than the PICS line in 1 out of 9 patients in supine 

position and in 7 out of 9 patients in upright position. b) The angle of the pessary with respect to the PICS line changes only slightly between body 

positions without any specific direction. 
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Synopsis: Free-breathing acquisition of pancreatic MR elastography can potentially introduce errors in stiffness reconstruction. In this study, breathing tasks are 

introduced during interleaved and reversed slice order MRE acquisition to determine if the quality of MRE increases. The shear-wave speed and octahedral shear 

strain signal-to-noise-ratio in the pancreas did not significantly change when using breathing tasks. However, the stability of the pancreas location over time increases 

when using breathing tasks combined with reversed slice ordering as well as the octahedral shear strain signal-to-noise-ratio in the whole abdomen. Future research 

should focus on comparing shear-wave speed reproducibility of both MRE methods. 

 

Introduction: Pancreatic MR Elastography (MRE) can detect viscoelastic changes in the course of pancreatitis or pancreatic cancer1,2. Both breath-hold and free-

breathing (FB) MRE is possible, the latter preferable in sick patients unable to suspend their breath multiple times. However, FB-MRE acquisition can lead to a 

mismatch in pancreatic location over multiple phase-offsets, potentially introducing errors in stiffness reconstruction.  

Using a breathing task (BT) paradigm timed such that MRE acquisition for a given slice occurs during the same respiratory phase could potentially increase MRE 

quality without limiting the temporal and spatial resolution. We investigated the impact of BTs on pancreatic MRE by evaluating the pancreatic location over multiple 

phase-offsets. Furthermore, the influence of BTs on the octahedral shear strain signal-to-noise-ratio (OSS-SNR) and shear-wave speed (SWS) was determined. 

 

Methods:  

Study protocol: Nine healthy volunteers (♂=3,♀=6, mean age 27±2 years) were included. Subjects fasted four hours prior to MRI examination. BTs were created in 

ePrime (version 3.0,PST Inc.,Sharpsburg,PA,USA) and followed a natural breathing pattern(Figure 1). The breathing period was equal to TR and phase-offset 

delay, and instructions were synchronized with the sequence using a TTL pulse. This way, each slice with varying phase-offset is acquired at the same respiratory 

phase.  

MRI measurements: Multi-slice multi-frequency spin-echo echoplanar imaging (SE-EPI) MRE images were acquired with a 3.0T MRI scanner 

(R.5.7.1.1,Ingenia,Philips,Best,the Netherlands). Mechanical vibrations were introduced using four compressed-air driven MRE transducers at four vibrational 

frequencies (MREfreq=30,40,50,60Hz)2. Motion encoding gradients (MEG) were applied along three orthogonal directions. Three different MRE acquisitions were 

recorded(Table 1). In FB-MRE scans, no BTs were displayed and standard interleaved slice ordering was used. For the two MRE scans using synchronized BTs, 

interleaved (BT-Int) and reversed central slice ordering (BT-Rev) were performed(Figure 1). BT-Rev was used to test if central slices containing the pancreas within 

the multi-slice acquisition were scanned during end-expiration.  

Analysis and statistics:To determine the stability of the pancreas location over phase-offsets for the three MRE scans, the pancreas was manually delineated in three 

slices aimed at head, body and tail on the magnitude MRE images for eight phase-offsets at 30 and 50 Hz. The mean dice similarity coefficient (DSC) of all 

combinations of the regions of interest (ROI) of all three slices was calculated. To test for differences between BT-Int and BT-Rev, the DSC for each slice was 

compared. Magnitude images of BT-Int and BT-Rev were visually compared to investigate the influence of slice order on image quality. The whole pancreas was 

delineated on mean magnitude MRE images (mean over phase-offsets, MEG directions, frequencies). These ROIs were used to determine the pancreatic OSS-SNR 

and pancreatic SWS which was calculated with kMDEV inversion3. The OSS-SNR was also calculated over the whole abdomen. Repeated measures ANOVA with 

pairwise comparison and Bonferroni correction was used for statistical analysis. Image analysis and statistical analysis were performed in Matlab 

(R2021a,Mathworks,Natick,MA,USA) and SPSS (version 26,IBM,Armonk,NY,USA). 

 

Results: Mean values of DSC, SWS and OSS-SNR are shown in Table 2. Compared with FB, DSC was significantly higher for BT-Rev (p=0.026), while no 

significant difference was found for DSC between BT-Int and BT-Rev or FB and BT-Int. No significant differences were found between the MRE scans for 

pancreatic SWS and OSS-SNR. However, OSS-SNR in the whole abdomen significantly increased for BT-Rev compared to FB and BT-Int (p-value=0.010 and 

0.014 respectively). Magnitude images over eight phase-offsets can be found in Figure 2. Comparing the magnitude image quality between BT-Int and BT-Rev, 

signal loss in various slices was present more pronounced in BT-Rev. Overlap images of phase-offset ROIs and corresponding elastograms are shown in Figure 3.  

 

Discussion: Introduction of BT-Rev paradigm during pancreatic MRE significantly increases DSC compared to FB-MRE. This may be an important finding for 

pancreatic tumors where stromal tissue is of great interest. Pancreatic tumors can be small and a consistent location over multiple phase-offsets is needed to be able 

to perform sub-region analysis. Previous research showed that 2D motion correction in coronal direction improves sharpness of FB-MRE images4. Nevertheless, 

this is more difficult in an axial orientation and eddy current artifacts lead to distortions when acquiring pancreatic MRE in coronal orientation on a 3T MRI 

system. 

BT-Rev MRE significantly improves OSS-SNR in the whole abdomen compared to FB and BT-Int, while pancreatic OSS-SNR did not significantly differ between 

scans. Higher abdominal OSS-SNR suggests that measurements may be more reproducible when BT-Rev is used. The pancreatic SWS did not significantly differ, 

and values were comparable to literature1,2,4,5.  

Magnitude image quality of BT-Int was visually higher than BT-Rev. This could be explained by signal leakage into adjacent slices typical of EPI acquisitions. 

Despite this finding, the increase in whole-abdomen OSS-SNR and DSC warrant future research on using BT-Rev to compare the reproducibility of SWS 

measurements with FB-MRE. The scan time increased two times when using BTs, giving the opportunity to acquire more/thinner slices or a higher in-plane resolution. 

Furthermore, future research could focus on performing motion correction in axial orientation or applying respiratory binning.  

 

Conclusion: Although, pancreatic OSS-SNR did not improve and SWS did not significantly change, using BTs during pancreatic MRE acquisition causes a more 

stable pancreatic location over multiple phase-offsets leading to a higher OSS-SNR in the whole abdomen.  
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Figure 1: Breathing tasks are synchronized with the MRE sequence such that each slice will be acquired during the same 

breathing phase. The TR is 4800 ms and the delay varies for each mechanical frequency and phase-offset. In this study, 

interleaved and reversed slice order are used, shown here for 29 slices. At the right, an accelerated example of the breathing 

task paradigm is shown that is presented to the volunteer during the MRE scan. 

 

Table 1: Summary of the relevant MRE parameters. TRs of MRE 

scans with breathing tasks are longer to ensure a more natural breathing 

pattern. 

Table 2: The mean (standard deviation) of dice 

similarity coefficient, shear-wave speed and 

OSS-SNR in the pancreas and whole abdomen 

for the three different MRE scans (†p=0.026 , 

*p=0.010 , ‡p=0.014). 

Figure 2: Magnitude MRE images for the three 

different scans for each phase-offset acquired at 

a vibrational frequency of 30 and 50 Hz. The 

pancreas is delineated in red. The movement of 

the pancreas over time can be recognized. 

Figure 3: Top: Overlap of 16 ROIs delineated on 8 phase-offset 

magnitude images for 2 mechanical frequencies shown for the three 

different MRE scans in 1 volunteer. The image is zoomed in on 

pancreatic ROI. Note that for FB-MRE, the pancreas was not located in 

this slice for 2 phase-offsets.  

Middle: Magnitude MRE images for the three MRE scans with the 

pancreas delineated in red.  

Bottom: SWS map of the whole abdomen with the pancreas delineated in 

red. The orange arrow indicates signal distortion in the pancreas in the 

FB-MRE scan. 
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Synopsis:  

Early response assessment for patients with pancreatic cancer receiving chemotherapy is limited. Detection of alterations in 31P metabolite levels during treatment could change this 

perspective. However, to date 31P MRS has not yet been demonstrated in the human pancreas in vivo. Here we show in-vivo 31P MRSI data in the pancreas of healthy subjects, using a 
31P whole-body transmit coil in combination with a 16-channel receive array at 7T, and show moderate to good test-retest reliability. In addition, we demonstrate the feasibility of 

performing 31P MRSI in a patient with pancreatic cancer before and after chemotherapy.  

 

Purpose:  

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a dismal prognosis, of which the incidence is increasing.1-3 Patients with PDAC are usually treated with 

chemotherapy. However, there are limitations in the assessment of early treatment response. 

Phosphorus magnetic resonance spectroscopy (31P MRS) is a non-invasive technique that has been shown to enable detection of early treatment-induced metabolic 

alterations in different tumors.4 Nevertheless, to date 31P MRS has not yet been demonstrated in the human pancreas in vivo. The penetration depth of commonly used 31P surface 

coils is limited and the pancreas is located more or less in the center of the abdomen, which makes 31P MRS of the pancreas extremely challenging. With the development of a 31P 

whole-body transmit coil for a 7T MRI scanner5 and by using a multi-channel 31P receive array6, 31P signals can be measured also from deeper lying tissues in the abdomen, providing 

the opportunity to measure in-vivo 31P MR spectra from the pancreas. 

 The first aim of this study was to determine the repeatability of 31P MRSI of the pancreas of healthy subjects at 7T. Secondly, we aimed to determine the feasibility of 

obtaining 31P MRSI data from a patient with PDAC. 

 

Methods:  

The institutional review board approved this study and all participants gave written informed consent. Ten healthy volunteers (six males and four females, age 34±12y) participated in 

the repeatability study. In addition, one patient with PDAC (age 27y, tumor 94mmx41mm on CT images) was included. We used a whole-body 7T MR system (Philips Healthcare, 

Best, NL) with an in-house designed 31P whole-body birdcage transmit coil (diameter 60cm) to perform 31P MRSI at 120.6 MHz.5 In addition, a body array with 16 31P loop coils and 

8 transmit-receive fractioned 1H dipole antennas6,7 was used to receive the 31P signals and perform 1H MRI, respectively. All healthy participants were scanned twice on the same day. 

The patient was also scanned twice, but on different days, i.e., before and after four cycles (8 weeks) of chemotherapy. B0 maps were acquired for B0 shimming and transversal and 

coronal T1-weighted images were measured with the same field of view and number of slices as for 31P MRSI. 31P spectra were acquired with a pulse-acquire sequence with a block 

pulse (carrier frequency set to phosphocreatine, B1=6T), followed by phase encoding gradients for 3D spatial encoding. The following acquisition parameters were used: 

FOV=500(LR)×280(AP)×360(FH)mm3, nominal resolution=20mm isotropic, TR/TE=60/0.56ms, FA=12°, BW=5000Hz, NSA=20, acquisition time=22:37min. Matlab R2019a (The 

Mathworks Inc., Natick, MA) was used to reconstruct the 31P MRSI data. Principal component analysis (PCA)-based denoising was performed before applying Roemer channel 

combination.8,9 A mask around the pancreatic head/body was manually drawn on the T1w images. The data in the mask was quantified using AMARES in the spectroscopy fitting tool 

(OXSA).10-12 The following metabolites were fitted: -, -, and -ATP, inorganic phosphate (Pi), glycerophosphocholine (GPC), glycerophosphoethanolamine (GPE), 

phosphocholine (PC), phosphoethanolamine (PE), nicotinamide adenine dinucleotide (NADH), uridine diphosphate glucose (UDPG), phosphatidylcholine (PtdC), and 

phosphocreatine (PCr). Variability was assessed with Bland-Altman analyses (coefficients of repeatability (CR) and bias), intraclass correlation coefficients (ICC), t-tests (p-value), 

and within-subject coefficients of variation (CoV).13 

 

Results:  

Figure 1 shows an example of the pancreas mask on the 31P MRSI grid (in one slice) and the 31P MR spectrum in one of the voxels. On average 6±2 voxels were used for 

quantification of pancreas 31P metabolites in scan 1, and 5±2 voxels in scan 2. No significant differences were observed in 31P metabolite levels between scan 1 and scan 2 of healthy 

subjects (p-values>0.05; Figure 2). ICC’s were higher than 0.50 for most metabolites, indicating moderate (ICC=0.5-0.75) to good (ICC=0.75-0.9) repeatability, except for -ATP, 

PC, PtdC. CoV’s ranged from 4.95% for -ATP to 38.83% for GPE (excluding PtdC). Bland-Altman plots of variability in relative 31P metabolite levels are shown in Figure 3. In the 

patient, 10 voxels were selected in the pancreatic tumor before therapy and 7 voxels after therapy, of which 2 were discarded because of contamination with biliary PtdC (Figure 4). 

Figure 5 shows the GPC, GPE, PC, and PE levels and combined phosphodiester (PDE) and phosphomonoester (PME) levels in the individual tumor voxels in the patient before and 

after therapy, next to the average values in the pancreas of the healthy subjects. GPC seems higher in the patient compared to controls, and PC, PE and PME increased significantly 

after therapy. 

 

Discussion and conclusion:  

To the best of our knowledge, we have shown here the first in-vivo 31P MRS data of the human pancreas. Repeatability of 31P MRSI in the healthy pancreas was moderate to good and 

comparable to the repeatability of 31P MRSI previously determined in the liver at 7T,14 also for the lower-concentration metabolites. In addition, we have shown the feasibility of 

performing 31P MRSI in a patient with PDAC and detected changes in PME levels in the tumor before and after four cycles of chemotherapy. 

In conclusion, in-vivo 31P MRSI of the human pancreas is feasible at 7T with the use of a 31P whole-body transmit coil in combination with a 31P receive array, and has 

potential for monitoring treatment response in pancreatic cancer. 
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Mean (SD) Mean (SD) ICC p-value CoV CR bias

α-ATP 21.81 (1.59) 22.15 (2.26) 0.85 0.48 4.95 2.82 -0.33

β-ATP 13.82 (1.58) 13.79 (1.47) -0.63 0.98 11.71 4.65 0.02

γ-ATP 18.63 (2.59) 19.03 (3.01) 0.93 0.42 5.81 2.92 -0.40

Pi 6.60 (1.12) 7.13 (1.20) 0.60 0.20 13.07 2.38 -0.53

GPC 3.69 (0.96) 3.78 (1.08) 0.86 0.71 14.98 1.44 -0.09

GPE 2.44 (0.94) 2.14 (1.06) 0.72 0.34 35.83 1.84 0.30

PC 4.21 (0.67) 4.50 (1.26) 0.31 0.49 20.04 2.55 -0.29

PE 5.30 (0.64) 5.55 (0.94) 0.53 0.34 5.51 1.53 -0.25

NADH 7.22 (1.92) 5.90 (2.36) 0.57 0.10 27.78 4.41 1.32

UDPG 1.60 (0.50) 1.50 (0.86) 0.68 0.67 31.88 1.39 0.10

PtdC 2.37 (1.10) 1.79 (0.73) 0.00 0.20 41.68 2.58 0.58

PCr 12.28 (4.26) 12.72 (6.07) 0.82 0.75 22.01 8.21 -0.43

PME (PC+PE) 9.52 (0.78) 10.05 (2.00) 0.57 0.33 10.28 3.26 -0.54

PDE (GPC+GPE) 6.13 (1.81) 5.92 (1.84) 0.84 0.65 17.26 2.74 0.21

Scan 1 Scan 2
Metabolites

Statistics

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: 31P metabolite quantification results in the pancreatic masks of healthy subjects in 

scan 1 and scan 2 and the repeatability measures: intraclass correlation coefficient (ICC),     

t-test results (p-value), intra-subject coefficient of variance (CoV), coefficient of 

repeatability (CR) and bias. Obtained metabolites are expressed as percentage of the sum of 

all fitted signals. Combined phosphomonoester (PME) and phosphodiester (PDE) levels 

were calculated from the fit results of the obtained PC, PE, GPC and GPE metabolites.  

 

Figure 1: A) One slice of the transversal T1-weighted 7T MRI of subject 5, with 

the pancreas indicated with the red line; B) 31P MRSI grid; C) Selected voxels 

(green) in the pancreatic mask with in D) a 31P MR spectrum of one voxel in the 

pancreas. No apodization was applied in the spectrum. 

 

Figure 3: Bland-Altman plots of variability in relative 31P metabolite levels.      

Each colour represents one subject. The green dashed line shows the bias from zero and 

the blue dashed lines mark the 95% confidence interval.  

 

Figure 4: A/D) One slice of the transversal T1-weighted 7T MRI of the PDAC patient, 

with the pancreatic tumor indicated with the red line; B/E) Selected voxels (green) in 

the pancreatic tumor mask with in C/F) a 31P MR spectrum of one voxel in the tumor, 

before and after four cycles of chemotherapy. The red voxel in the tumor mask after 

therapy was discarded because of contamination from biliary PtdC. No apodization 

was applied in the spectra. 

 

Figure 5: A comparison of the quantified GPC, GPE, PDE, PC, PE and PME levels in 

the pancreas of healthy subjects (average of scan 1 and average of scan 2) and in the 

pancreatic tumor of the patient before and after chemotherapy. For the patient, each 

dot represents a measurement from one voxel in the tumor (10 voxels before therapy 

and 5 voxels after therapy). The metabolites levels are expressed as percentage of the 

sum of all fitted signals. * p-value<0.05. 
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Synopsis: The use of high undersampling factors and short flip angle trains leads to shorter acquisition times in MR Fingerprinting acquisitions. To obtain accurate multi-component 

estimates from this data advanced reconstructions are required. We study a low-rank ADMM based reconstruction method that adds a multi-component constraint to the inverse 

reconstruction problem (MC-ADMM). This method is combined with a joint-sparsity constraint yielding higher quality multi-component estimates with k-SPIJN than with previous 

methods. In simulations we observed increased stability to sequence truncation and in vivo multi-component estimates contained less noise-like effects. 

Introduction: MR Fingerprinting (MRF)1 allows for time-efficient estimation of tissue properties by sampling the MR-signal in a transient state while applying high undersampling 

factors. Conventionally, the data is first reconstructed to (SVD-compressed) time frame images, from which parameter estimates per voxel are obtained, e.g. 𝑇1, 𝑇2 and 𝑀0-maps. This 

voxel-wise estimation does not take multi-component effects such as myelin water or partial voluming into account. Recently we proposed the Sparsity Promoting Iterative Joint NNLS 

algorithm for MRF-data(SPIJN-MRF) to obtain multi-component 𝑇1, 𝑇2-estimates based on a joint-sparsity constraint2. The estimation of multi-component fraction maps is less robust 

to artifacts than single-component estimations and therefore requires data with less undersampling artifacts (and thus requiring long scan times). In this work we aim to improve the 

image reconstruction to facilitate multi-component MRF while high undersampling factors are applied. Therefore we propose an Alternating Direction Method of Multipliers(ADMM) 

including multi-component constraints into the reconstruction problem. The proposed k-SPIJN method benefits from this extra regularization term that enables direct estimation of joint 

sparsity multi-component estimates from undersampled data. 

Methods - Reconstruction methods: Essentially, multi-component effects in MRF can be modelled as a linearly weighted combination of (low rank(LR)3) dictionary items 𝐷 (𝐷𝑟, 

rank 𝑟). Given certain LR-images 𝑥𝑟, the weights of the dictionary items can be obtained by solving a non-negative least squares problem: 

  𝑐 = argmin
𝑐̂∈ℝ≥0

𝑁𝑑×𝑁𝑛

‖𝑃𝑟𝐷𝑟 �̂� − 𝑥𝑟‖ (1) 

in which 𝑐 ∈ ℝ≥0
𝑁𝑑×𝑁𝑛 are estimated magnetization weights per voxel and dictionary atom, and 𝑃𝑟 represents spatial phase variations (as excluded from the real-valued 𝑐). 𝑃 ∈ ℂ𝑁𝑛 is 

pre calculated based on a LR-solution, using 𝑟 = 1.  

 𝑃 =
𝑥1

𝑎𝑏𝑠(𝑥1)
 (2) 

With element-wise division, after which P is mapped to r dimensions. The inverse multi-component reconstruction problem can be written as: 

 𝑐 = argmin
𝑐̂∈ℝ≥0

𝑁𝑑×𝑁𝑛

‖𝐺𝑈𝑟𝐹𝑟𝑆𝑃𝑟𝐷𝑟 �̂� − 𝑘‖2
2. (3) 

Where 𝑘 is (multi-coil) k-space data, 𝐺 a (spiral) gridding-operator, 𝑈𝑟 a SVD-based compression-operator, 𝐹𝑟 a Fourier-operator, 𝑆 a coil-sensitivity-operator and 𝑟 −underscript 

operators "broadcasted" to low-rank space. Since this problem cannot be solved directly in an efficient manner, we performed variable splitting as Assländer et al.4 did for single-

component MRF. Accordingly, we rewrote the MC-MRF reconstruction as an augmented Lagrangian minimization problem: 

 𝑥𝑟 , 𝑐, �̄� = argmin
𝑥𝑟,𝑢∈ℂ

𝑟×𝑁𝑛 ,𝑐̂∈ℝ≥0
𝑁𝑑×𝑁𝑛

1

2
‖𝐺𝑈𝑟𝐹𝑟𝑆𝑟�̂�𝑟 − 𝑘‖2

2 +
𝜇

2
‖𝑃𝑟𝐷𝑟�̂� − �̂�𝑟 + 𝑢‖2

2 −
𝜇

2
‖𝑢‖2

2 (4) 

in which 𝑢 is the scaled Lagrange multiplier and 𝜇 the coupling parameter balancing data consistency and constraint terms. Subsequently, a multi-component ADMM(MC-ADMM) 

(Fig. 1-upper row) was used to solve (4), alternating between: 

 𝑥𝑟 = argmin
𝑥𝑟∈ℂ

𝑟×𝑁𝑛

1

2
‖𝐺𝑈𝑟𝐹𝑟𝑆𝑟�̂�𝑟 − 𝑘‖2

2 +
𝜇

2
‖𝑃𝑟𝐷𝑟 �̂� − �̂�𝑟 + 𝑢‖2

2𝑥𝑟 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥𝑟∈ℂ

𝑟×𝑁𝑛

1

2
‖𝐺𝑈𝑟𝐹𝑟𝑆𝑟�̂�𝑟 − 𝑘‖2

2 +
𝜇

2
‖𝑃𝑟𝐷𝑟 �̂� − �̂�𝑟 + 𝑢‖2

2 (5) 

 𝑐 = argmin
𝑐̂∈ℝ≥0

𝑁𝑑×𝑁𝑛

𝜇

2
‖𝑃𝑟𝐷𝑟�̂� − �̂�𝑟 + 𝑢‖2

2𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑐̂∈ℝ≥0

𝑁𝑑×𝑁𝑛

𝜇

2
‖𝑃𝑟𝐷𝑟�̂� − �̂�𝑟 + 𝑢‖2

2 (6) 

 𝑢 = 𝑢 + 𝑥𝑟 − 𝑃𝑟𝐷𝑟𝑐𝑢 = 𝑢 + 𝑥𝑟 − 𝑃𝑟𝐷𝑟𝑐 (7) 

until convergence was reached. The LR-inversion problem of (5) was solved with Conjugate Gradients. Equation (6) was solved using the NNLS algorithm5. 

To reduce the number of possible solutions and regularize the multi-component problem, the Sparsity Promoting Iterative Joint NNLS (SPIJN)2 (Fig.1-middle row) algorithm was 

applied, applying a joint-sparsity constraint  minimizing the number of tissue components, i.e. in a voxel as well as spatially, regularizing the number of non-zero component-maps 𝑐𝑖 . 

The sparsity term 𝑁𝑐 = ∑ ‖𝑐𝑖‖0
𝑁
𝑖=1  was implemented by combining dictionary reweighting 6 and ℓ1

2-regularization7 with SPIJN regularization parameter 𝜆 = 0.15. 

The number of employed dictionary atoms is reduced by the joint-sparsity constraint. This facilitates that in an iterative scheme the actually used dictionary and component maps can 

be restricted to non-zero elements to improve problem conditioning. The resulting reconstruction scheme will be referred to as k-SPIJN(Fig.1-lower row). 

Methods – experiments: Experiments were performed with a gradient-spoiled SSFP-MRF acquisition8 with a flip angle train of length 400 (and truncated in numerical experiments)9 

and using TR=15ms,TE=4ms. Dictionary signals were simulated using EPG's10(𝑇1=100ms-5.2s, 𝑇2=10ms-3s 5%-increments). A constant-density spiral with a undersampling factor 32 

was used. The Brainweb phantom 11,incorporating partial voluming of white matter(WM), gray matter(GM) and CSF, was used in numerical simulations to verify the implemented 

methods and sensitivity to ADMM-parameters. Geometric mean 𝑇1 and 𝑇2-values were evaluated for error analysis. In vivo brain scans were performed on a 3.0 T Philips Ingenia (Best, 

The Netherlands) MR-scanner with a 32-channel head coil (FOV=240 × 240mm2, in plane resolution 1 × 1mm2 and 5mm slice thickness). Acquisition with a single flip angle train 

and 5/32 repeats were performed (delay time 6s). Both for numerical and in vivo experiments joint sparsity multi-component estimates were obtained by 1) LR-inversion and 

subsequently SPIJN 2) MC-ADMM and subsequently SPIJN and 3) k-SPIJN. 

Results and discussion: In numerical simulations the MC-ADMM showed a fast convergence behaviour (Fig. 2), after which  we fixated 𝜇 = 2 × 10−3 in further experiments. When 

sequence lengths were truncated from 400 to 300 and 200 time-points, obtained estimations showed increasing errors and errors in WM and GM became dominant in LR-inversion 

estimates at N=200(Fig. 3. k-SPIJN showed lower errors than MC-ADMM estimates. Estimated magnetization fraction maps with different reconstruction methods are shown in Fig. 

4 and Fig.5 for undersampling factors 5/32 and 1/32 respectively. All reconstructions yielded fraction maps corresponding to  WM, GM and CSF. Also, myelin water fraction maps 

were estimated (shortest 𝑇1, 𝑇2 values, first column), but an increased noise propagation was observed in the MC-ADMM+SPIJN estimates compared to k-SPIJN. For 5/32-

undersampling 2 CSF-like components were estimated as observed before2,12, while 1/32-undersampling yielded 1 CSF component. This was not directly related to the used 

regularization parameter. 

Conclusion: The k-SPIJN reconstruction method is able to obtain myelin water fraction maps from highly undersampled MRF-data, which was not possible with previous methods, 

with relatively short flip angle trains, reducing acquisition time. 
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Figure 1. A schematic overview of the here proposed reconstruction methods. Low rank 

Multi-component ADMM (MC-ADMM) reconstructs low rank images with a multi-
component constraint. SPIJN2 allows for joint-sparsity multi-component estimates from (low 

rank) images. k-SPIJN directly reconstructs joint-sparsity multi-component maps from 

undersampled k-space MRF data. 

Figure 2. Convergence plots for different values of the ADMM coupling parameter. The 
ADMM loop was performed with 20 Conjugate gradient iterations per outer iteration. A 

numerical BrainWeb phantom was used as ground truth and the root mean square error (RMSE) 

is evaluated over the complete image. Geometric mean 𝑇1 and 𝑇2 were derived from the 

obtained component maps. 

Figure 3. Obtained error maps for  multi-component tissue segmentations using different 

reconstruction methods (lower 3 rows). A numerical BrainWeb phantom was used as ground 
truth (upper row) and an MRF sequence of length 200 was used. Root mean square errors 

(RMSE) were computed over the whole slice. Estimated and ground truth relaxation times are 

reported above each map. 

Figure 4. Estimated magnetization fraction maps and tissue components from R=5/32 

undersampled data for sequence length 400 with 3 different reconstruction methods. The 
estimated components (structurally and matched relaxation times) relate to myelin water, WM, 

GM and CSF (columns from left to right). In general there is structural similarity between 

estimates, but k-SPIJN shows less noise especially in white matter. 

Figure 5. Estimated magnetization fraction maps and tissue components from R=1/32 

undersampled data for sequence length 400 with 3 different reconstruction methods (rows). 

The estimated components (structurally and matched relaxation times) relate to myelin water, 
white matter, gray matter and CSF (2 components) (columns from left to right). Again 

differences between reconstruction techniques are most pronounced in the first 2 columns. 
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Synopsis: Motion-compensated images can be created from motion-binned undersampled radial stack-of-stars data through compressed sensing and image 

registration. However, for longer repetition times or many partitions, the acquisition time for one radial projection with all phase-encode steps becomes too long to 

sample the motion via self-gating, which leads motion artifacts. Therefore, we estimate motion from FID navigators and perform binning on a single-readout level to 

gain higher spatiotemporal resolutions. Our methods are tested on a motion phantom and volunteer with gridding and motion-compensated reconstructions. Our 

results show accurate detection of the motion signal and reduced motion blur in reconstructions. 

 

Purpose: MRI of the thorax is challenging, as respiratory motion can induce blurring or ghosting artifacts.1 Breath-holding limits acquisition times to approximately 

15 s, precluding high spatial resolutions over large fields-of-view. 

Radial sampling schemes are inherently motion robust.2 Furthermore, if golden-angle reordering is used, radial MR data can be retrospectively gated into multiple 

motion states according to a motion signal.3 A common method to extract the motion signal is to collect the data near the k-space center for projections of the total 

signal in the imaged volume at every Δt = Np·TR, where Np is the number of partitions and TR is the repetition time.3-6 According to the Nyquist criterion, the 

detectable respiratory frequency in this case is limited to fs = 1/(2·Np·TR). For longer TR, or many partitions, the acquisition time for a full stack of partitions per 

radial projection becomes too long to faithfully sample the motion, leading to temporal aliasing and motion blur when binning k-space data into different motion 

states.  

We lift this restriction by acquiring a short free-induction decay (FID) navigator at every TR, allowing single-readout binning (SRB) of the data into motion states, 

resolving motion frequencies up to 1/(2·TR). We test our method on a motion phantom and a normal breathing volunteer, reconstructing the data with a non-uniform 

fast Fourier transform (NUFFT) and an adapted version of the 4D motion-compensated high-dimensional total variation (MoCo-HDTV) algorithm, which is a 

framework for joint reconstruction and motion estimation for undersampled radial data.6 

 

Methods: We acquired data of a motion phantom (Quasar MRI 4D, Modus QA, London, Canada) and volunteer with a golden-angle radial stack-of-stars spoiled 

gradient echo sequence7 (Table 1) on a 3-T MR system (Prisma-Fit, Siemens Healthineers, Erlangen, Germany). The phantom contained a central oscillating gel-

filled cylinder. Maximum peak-to-peak translation was set to 3 cm and the frequency of the breathing-like motion pattern was approximately 0.25 Hz. TR and Np 

were chosen such that spoke angle binning (SAB), which includes all phase-encode steps per spoke orientation, was expected to lead to inaccurate motion estimates. 

We sampled 32 FID acquisition points in 200 µs between excitation and phase-encoding gradient as a navigator. For each spoke angle, all partitions were sampled in 

random order before moving to the next angle to ensure a more evenly distributed number of readouts in each partition and respiratory phase (Fig. 1).  

Respiratory motion signals were extracted as the first principal components of principal component analyses (PCA) of the FID navigators and of the nine central 

points of every gradient-echo readout.6,8 We calculated the correlation coefficients of the FID and gradient-echo motion signals with the reference signal of the 

phantom. We reconstructed the data both with NUFFTs and via an adapted version of the MoCo-HDTV algorithm.6  

To compare SAB and SRB independent of the method of motion detection, we created reconstructions for SAB with the means of the FID navigators across the 

partitions as the motion signal, since Δt was too long to detect respiratory motion from the k-space center. 

 

Results and Discussion: The FID motion signal shows a clear correspondence to the motion pattern imposed on the phantom, indicating that the rigid motion during 

acquisition was accurately extracted from the FID navigators (Fig. 2). Meanwhile, the gradient-echo motion signal is clearly aliased (Fig. 2). Calculated correlation 

coefficients of the FID and gradient-echo motion signals with respect to the reference equaled 0.98 and 0.26, respectively. 

SRB resulted in reduced motion blur in NUFFT reconstructions of the phantom data, and in higher through-plane incoherence of undersampling artifacts, which may 

be advantageous for compressed sensing reconstructions (Fig. 3).8 

Figure 3 also shows comparisons of the MoCo-HDTV reconstructions for the phantom data again at end-exhalation, which greatly reduce the level of undersampling 

artifacts, although at the cost of slight motion blur. However, SRB instead of SAB leads to an increase of the effective spatial resolution by reducing motion blur 

between slices. Using SRB combined with MoCo-HDTV reconstruction on in vivo data leads to a sharp depiction of anatomical structures in the thorax and abdomen 

at high spatial resolution (Fig. 4). 

 

Conclusion: We showed first results for the acquisition and reconstruction of radial stack-of-stars data where the temporal resolutions for motion detection and 

reconstruction are increased through FID navigators and single-readout binning. Images of a moving phantom and a volunteer show reduced motion blur, and reduced 

and more incoherent streaking artifacts, allowing the detection of small anatomical structures in the upper abdomen in a free-breathing acquisition. 
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Table 1. Sequence parameters of the MR acquisitions of phantom and volunteer data. Δt for motion indicates the time interval between motion signal samples. 

 

Figure 1. Distribution of the number of readouts per motion phase (for 10 unique phases) and partition for three different acquisition schemes: SAB (left), SRB with linear kz-reordering (middle image) and 

random kz-reordering (right). We suppress the periodicity in the distribution (middle image) by sampling partitions in random order (right). 

 

Figure 2. The phantom’s reference signal (blue line), the free-induction decay navigator signal (red dotted line) and the gradient-echo signal (green line). There is a clear correspondence between the reference 

and the FID navigators (correlation coefficient of 0.98 with reference), apart from some under- or oversampling of motion in the end-inhalation phase. The gradient-echo signal is clearly aliased (correlation 

coefficient of  0.26 with reference). 

 

Figure 3. NUFFT and MoCo-HDTV reconstructions of the phantom data at end-exhalation with both the SAB and SRB methods. Images in the top row correspond to reconstructions in the readout plane. 

For images in the bottom row, the vertical axes of images correspond to the phase-encoding directions. SRB reduces the motion blur (arrows) and increases through-plane incoherence of radial streak artifacts.  

 

Figure 4. Transversal and coronal MoCo-HDTV reconstructions of the volunteer data with SRB. Data was acquired in coronal orientation. Contours of the diaphragm and liver are sharply delineated in both 

images.  
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Synopsis: Robustness when applying Deep Learning methods to clinical data is crucial for accurate high-resolution reconstructions while having fast inference times. We propose the Cascades of 
Independently Recurrent Variational Inference Machine (CIRVIM), targeting deep unrolled optimization and enforcing data consistency for further robustness. We quantify contrast resolution of seven and 

half times prospectively undersampled FLAIR MRI without fully-sampled center containing Multiple Sclerosis lesions. The proposed scheme reduces inference times by a factor of 6 compared to Compressed 

Sensing. Lesion contrast resolution improves by approximately 13% while preserving spatial detail with enhanced sharpness compared to more blurred results of other presented methods.  

 

Purpose: To reconstruct out-of-training-distribution high-resolution images containing Multiple Sclerosis lesions with sufficient contrast resolution and fast inference times. 

 

Introduction: In MRI high acceleration factors can be achieved with Compressed Sensing (CS)1 to facilitate the slow acquisition times, but the reconstruction times are relatively slow. Machine Learning 
(ML) can vastly reduce inference times while producing high-resolution images. Sampling significantly fewer data points results in kspace results in an aliased image in the image domain. The barrier when 

applying an ML method for dealiasing and denoising MRI data in the clinical setting is its robustness in generating accurate results. The main challenge is the generalization to new data, where it is unknown 

how to restore the fully sampled image given sparsely sampled measurements. This is known as the inverse problem of accelerated-MRI reconstruction. ML methods learn how to solve it from the data 
instead of applying a predefined sparsifying transform as in CS. We assess the robustness of an unrolled scheme targeting optimization by gradient descent to solve the inverse problem of accelerated-MRI 

reconstruction. We use pretrained networks and compare them to CS for evaluating fast high-resolution reconstructions of out-of-training-distribution clinical data of Multiple Sclerosis patients with known 

white matter lesions. 

 

Methods: The Recurrent Inference Machine2 solves the inverse problem of accelerated-MRI reconstruction through a sequence of alternating convolutional and recurrent layers. To reduce the model’s 
complexity and, thus, inference time, we chose the Independently Recurrent Neural Network (IndRNN)3 as an option for the recurrent layers and built an Independently Recurrent Inference Machine (IRIM). 

Its recurrent nature allows it to capture long-range dependencies through time steps, so robustness is assessed by increasing them. Nevertheless, training RNNs with a large number of time-steps is challenging 

due to often out-of-memory errors by vanishing or exploding gradients. For that purpose, we selected a general variational scheme of cascades and built RIM blocks sequentially connected. We call this 

method Cascades of Independently Recurrent Variational Inference Machine (CIRVIM) (Figure 1). 

We trained networks on fully sampled 3D 3.0T T1-weighted brain data2, as well as 2D FLAIR brain data4, retrospectively undersampled up to ten times on a Gaussian distribution. The training and validation 

sets consisted of 3150 slices for the T1 dataset and 6750 for the FLAIR dataset. The IRIM and CIRVIM models were built with 64 channels and 8 time-steps. The cascades were tuned with selected values 

varying between 1 for building an IRIM and 4, 6, and 8 for building larger CIRVIM models. Parallel-Imaging Compressed Sensing (PICS) reconstructions were done using the BART toolbox5 with l1-

regularization set to 0.05 and 60 iterations (Figure 2). All experiments were performed on an NVidia Tesla V100 GPU with 32GB of memory. 

The test dataset contained 18 3D FLAIR scans of relapsing remitting Multiple Sclerosis patients with known white matter lesions, prospectively undersampled with a factor of 7.5 on a Variable-Density 

Poisson disk distribution. Data were acquired on a 3.0T Philips Ingenia scanner (Philips Healthcare, Best, The Netherlands) in Amsterdam UMC within the scope of a more extensive, ongoing study. The 
local ethics review board approved this study, and patients provided informed consent prior to imaging. A fully-sampled reference scan was also acquired and used to estimate coil sensitivity maps using the 

caldir method of the BART toolbox. We quantified the performance by measuring contrast resolution (CR) of the lesion relative to surrounding white matter after reconstruction:  

CR  =
Slesion − SWM surrounding lesion

Slesion + SWM surrounding lesion
. 

 

Results: The highest scoring method on measuring contrast resolution was the CIRVIM with eight cascades trained on the FLAIR data (Figure 3). The IRIM was the fastest method requiring ~6 seconds for 

reconstructing a 32-coils volume from the test set with 224 slices and matrix size 223×163. The largest CIRVIM with eight cascades was six times slower, while PICS was sixteen times slower than the 

IRIM. PICS scored fourth-best with overall more blurred results (Figure 4). The other CIRVIMs scored comparably to PICS, with overall sharper results but not up to the level of the model with the eight 

cascades. Quantitative evaluation of an example reconstructed slice showed an improvement in contrast resolution of approximately 13% of the FLAIR-trained CIRVIM compared to PICS (Figure 4). The 

second-highest scoring model (T1-trained IRIM) showed artifacts, while other reconstructions showed more apparent blurring. 

 

Discussion/ Conclusion: The Cascades of Independently Recurrent Variational Inference Machine (CIRVIM) target robustness through cascades for learning optimization by gradient descent. The CIRVIM 

built with eight cascades and trained on FLAIR data scored highest on measuring contrast resolution for reconstructing Multiple Sclerosis lesions with an undersampling factor of 7.5x. The models trained 

on the T1 dataset appeared to be robust in reconstructing FLAIR data. The updated inputs through the cascades can enhance performance, thus generalization to clinical data containing pathologies unseen 

during training. Our method showed promising generalization capabilities, preserving spatial detail on reconstructing MS lesions with enhanced sharpness in contrast to a more blurred result by CS, as well 

as reducing the inference times up to six times. 
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Figure 1: Sequentially connected RIM blocks form the Cascades of Independently 

Recurrent Variational Inference Machine (CIRVIM). The initial estimation (top-leftmost) 
is passed as input only to the first cascade. At every cascade, the subsampled 

measurements y and the computed log-likelihood gradient (top row), which is dependent 

on the previous estimation, are given as inputs to a RIM targeting optimization with better 

estimations (bottom) to produce the final estimation (middle-rightmost). 

 

 

 

 

 

 

Figure 2: GPU inference times of PICS, the IRIM, and the CIRVIM with an increasing 

number of cascades. The y-axis represents seconds of the time to reconstruct a 32-coils 
volume with 224 slices and matrix size 223 x 163. Increasing the number of cascades leads 

to a linear increment to the inference time. The IRIM was 16 times faster than PICS, while 

the CIRVIM with eight cascades was ~3 times faster. 

 

 

 

 

 

 

 

Figure 3: Evaluation of quantified contrast resolution. The x-axis, ordered from best 

(leftmost) to worst (rightmost), represents each model pretrained on the FLAIR and T1 
datasets. On top of each bar, the number of parameters of the model is reported. The 

CIRVIMs with the higher numbers of cascades performed best compared to the four 

cascades and the IRIM, while PICS scored fourth-best. 

 

 

 

 

 

 

Figure 4: Reconstruction of a 7.5x prospectively undersampled FLAIR MRI slice 

containing Multiple Sclerosis lesions. The CIRVIM with eight cascades (first row-third 
image) trained on FLAIR data scored highest when quantifying contrast resolution. The 

best model (first row-third image, highlighted in a red square box) showed substantial 

difference compared to the other methods, preserving great spatial detail, without any 
distortions compared to the second-highest scoring model (first row-fourth image), and 

less blurring than all the other methods. 
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Introduction 

MR Fingerprinting1 is getting increasingly more attention as a fast, multiparametric quantitative imaging method. The reduced scan-time of MRF has facilitated its applicability 

in research and clinical protocols. While MRF can have a rich sensitivity to a wide range of tissue properties, the relaxometry estimates are traditionally made voxel-wise, 

assuming a single T1,T2 combination per voxel. However, partial volume effects are known to hinder this so-called single component approach2.  

To cope with different tissue types within a voxel, the Sparsity Promoting Iterative Joint Non-negative least squares algorithm that was applied to MRF data3 (SPIJN-MRF) 

was proposed. This approach asserted joint sparsity of the number of tissue components in a region of interest, i.e. in a voxel as well as spatially. Compared to other methods1,4,5 

this does not require a predetermined number of tissues and has less variation in tissue compositions between neighbouring voxels. In first in vivo validation, SPIJN-MRF 

showed to be able to obtain tissue segmentations. 

The aim of this work is to evaluate the accuracy and repeatability of the SPIJN-MRF parameter estimations from highly undersampled MRF acquisitions and compare these 

with conventional segmentation methods. 

Methods 

Numerical simulations  

To assess the accuracy of the SPIJN-MRF and T1 weighted (T1w) based segmentations 20 BrainWeb phantoms6 were used. A gradient-spoiled MRF sequence of 1000 time 

points with a flip angle pattern as in[7] was simulated using EPG8(resolution 1x1x5mm3). T1w-images were simulated by the BrainWeb simulator. Rician noise(SNR=100) 

was added to the simulated MRF and T1w images.  

In vivo acquisitions 

Five healthy volunteers were scanned 8 times on a 3.0T GE MR750 MR scanner with a gradient-spoiled MRF sequence in an Institutional Review Board-approved study. 

Sequence settings were the same as in the simulations. 27 slices were acquired, with voxel size 1.2x1.2x5mm3, 1mm slice gap and 256x256 voxels per slice. Total scan time 

was 5:54 minutes. 

MRF data was reconstructed using an in-house implemented low-rank reconstruction algorithm. During reconstruction  low rank images were estimated while a compression 

matrix was iteratively updated. The spatial L1-norm of the L2-norm across the component images was applied for regularization purposes. 

An MRF dictionary was simulated with T1=100ms-3s and T2=10ms-1s with 5% step size. Synthetic T1w(sT1w) images were calculated after single component matching with 

TE=25ms, TR=300ms, FA=90°.  

The SPIJN-MRF partial volume segmentations were estimated by minimizing: 

 

in which X are the (compressed) MRF images with J voxels per time frame, D is the (compressed) dictionary with NA atoms and C consists of NA tissue fraction maps Ci of J 

voxels3. 

Data analysis 

To achieve spatial correspondence FSL-FAST9 and SPM1210 segmentations were applied to sT1w images. SPIJN-MRF was used to obtain multi-component estimates from 

the MRF data. Obtained partial volume maps were registered based on sT1w-images to the ICBM152 atlas. 

Six groups of MRF component maps were identified based on estimated T1, T2 values: myelin water(MW, T1:100ms-500ms,T2:9ms-20ms), white matter(WM, T1:800ms-

1050ms,T2:50ms-100ms), gray matter(GM, T1:1050ms-1500ms,T2:50ms-100ms), two CSF components(T1>2s,T2<300ms and T2>300ms) and veins and arteries(T1:500ms-

2s,T2:200ms-1200ms). CSF components and MW and WM maps were combined for comparison with SPM12 and FSL segmentations. 

The fuzzy Tanimoto coefficient (FTC) and Combined FTC (CFTC)11 (range 0-1, where 1 is best) were used to estimate the voxelwise similarity between numerical ground 

truth and estimations, and between partial volume maps across days in vivo respectively. The coefficients of variation (CoV) of estimated volumes per subject, tissue and 

method were calculated for simulations and in vivo data. Slices showing motion artefacts were visually identified and excluded from the analysis. 

Results 
Numerical results 

SPIJN-MRF yielded exact outcomes estimating the number of tissue component and corresponding relaxation times. The obtained segmentations were very close to the ground 

truth (Figure 1), while FSL and SPM12 showed a larger voxel-wise error. The relative error in volume was especially larger for SPM12.  

In vivo results 

SPIJN-MRF T1 and T2 estimates showed to be highly repeatable for WM, GM and CSF (Table 1). In comparison, myelin water showed more variation in T1. Furthermore, T1 

estimates for CSF consistently corresponded to the longest T1 time in the dictionary. 

Magnetization fraction maps for one subject for a center slice are given in Error! Reference source not found., showing a high similarity between scans, although a slight 

variation in MW fraction can be observed. Segmentations obtained with SPIJN-MRF, SPM12 and FSL showed clear differences (Error! Reference source not found.), 

especially in the CSF (see circles) and partial volume regions. Error! Reference source not found. shows the estimated CFTC and CoV for WM, GM, CSF and total brain 

volume (TBV) for the 5 subjects. SPM12 and FSL yielded smaller CoVs than SPIJN-MRF for WM and GM, while differences were smaller for CSF and TBV. Differences 

in CTFC were smaller and for CSF SPIJN-MRF showed better scores than SPM12 and FSL. 

Discussion 

The estimated relaxation times by SPIJN-MRF were in line with previously reported values in the literature12, but WM (excluding MW) showed higher T2 than GM, possibly 

due to the concentration  of myelin water in a separate component . In simulations, SPIJN-MRF showed a very small bias in total volume estimates and very high FTC 

compared with SPM12 and FSL. In vivo, the SPM12 and FSL segmentations showed a very low CoV, also compared to previous studies13,14, this could be caused by the use 

of sT1w images, potentially leading to artificially increased reproducibility (and possibly at the expense of biased estimates).  

Conclusion 

SPIJN-MRF is able to estimate accurate and precise tissue relaxation times and partial volume maps with increased accuracy in CSF compared to conventional methods.  
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Figure 3: A representative slice showing the white matter (top), gray 

matter (middle) and CSF (bottom) fraction maps obtained using 

SPIJN-MRF (left), SPM12 (middle), and FSL (right) for one single 

acquisition of one subject. Red and green circles point out notable 

differences in CSF between methods. 

Figure 2: SPIJN-MRF maps across days and tissue types for a central slice for one 

subject after grouping based on relaxation time and before registration. Note that the 

lower two rows use a different color range for illustration purposes. 

Figure 4: Combined Fuzzy Tanimoto Coefficient (CFTC) and CoV of estimated total volumes for each 

subject for white matter (including myelin), gray matter, CSF and total brain (white matter plus gray 

matter) obtained with SPIJN-MRF (blue), SPM12 (red), and FSL (green). The CFTC is a measure for 

voxel-wise differences, CoV shows the variation in total volume estimates. A total of 10 MRF acquisitions 

(out of 40) were affected by motion artefact in one or more slices. It concerned 3% of the total number of 

slices. These were left out of this analysis. 

Figure 1: Accuracy of partial volume estimates in numerical simulations based on 20 

BrainWeb phantoms. Voxel-wise accuracy was assessed with the fuzzy Tanimoto 

coefficient, accuracy of total volume estimates is compared based on the relative volume 

error. 

Table 1: Means and corresponding standard deviations of estimated T1 and T2 relaxation times across all 

5 subjects and 8 repeated scans per tissue as well as the means of 5 intrasubject standard deviations per 

tissue. *T1 or T2 values were the minimum/maximum value represented in the dictionary, which also 

occurred with extended boundaries. 

 

Tissue 

T1 (ms) T2 (ms) 

Mean (Std) Mean 

Intrasubject 

standard deviation 

Mean 

(Std) 

Mean  

Intrasubject standard 

deviation 

White matter excluding 

myelin water 943.4 ± 0.0 0.0 69.2 ± 1.2 2.5  

Gray matter 1383.9 ± 10.8 17.7 62.3 ± 1.2 1.7 

CSF longer T2 

3042.6 ± 0.0* 0.0 

1030.3 ± 

0.0* 0.0 

CSF shorter T2 

3042.6 ± 0.0* 0.0 

149.3 ± 

9.4 18.3 

Myelin water 

230.7 ± 20.1 34.0 

10.0 ± 

0.0* 0.0  

Veins and arteries 

876.2 ± 93.9 106.7 

1030.3 ± 

0.0* 0.0 
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Synopsis: Three-dimensional MRSI data of the prostate was analyzed with a Multivariate Curve Resolution (MCR) approach for rapid automated localization and 

classification of cancer and healthy tissue. This data-driven method was used to extract common spectroscopic components without a need of prior knowledge, and 

compared to fitting a linear combination of prior knowledge models (LCModel). The MCR method identified components with known prostate metabolites and 

residual lipid and water signals Altogether, our approach can be considered as a step towards the development of an automated tool for classification of prostate MRSI 

spectra, avoiding subjective human intervention. 

 

Introduction: Automated and reliable spectral evaluation is essential for the clinical use of 3D 1H-MRSI of the prostate1. The multivariate Curve Resolution-

Alternating (MCR) method aims at reconstructing the relative intensity of spectral profiles of individual chemical components within a sample2, providing an easily 

interpretable model. Aim of this work is to apply the data-driven MCR method to prostate MRSI data for rapid automated localization and classification of cancer 

and healthy tissue, reducing the requirement for in-house expertise and improving objectiveness by avoiding subjective human intervention. 

 

Method: We used data from 5 patients with prostate cancer (53-69 years, mean age 61 years) acquired on a 3T MR system (MAGNETOM Trio, Siemens Healthcare, 

Erlangen, Germany) with a body coil for transmission and an endorectal coil (MEDRAD, Pittsburgh, PA) for signal reception.  

Non-water suppressed MRSI data were acquired using a semi-LASER sequence with frequency-selective refocusing and crushing of lipid signals3, optimized pulse 

timing for the spectral shape of citrate (TE 88ms) and a TR of 1930 ms. The water signal and sideband artefacts were removed in post-processing using the Löwner 

BSS algorithm4. Magnitude spectra(n=1824) in the spectral range of interest(2-4ppm) of 4 patients were used to perform MCR, which models the data X as a linear 

mixture of components: X=C S, where C and S are matrices of the pure components’ relative abundances and spectral profiles respectively. These profiles are 

obtained by imposing mathematical constraints based on physicochemical principles. Therefore, MCR differs from other commonly used bilinear models such as 

Principal Component Analysis, whose components satisfy pure mathematical criteria(e.g.orthogonality) that do not necessarily relate to natural properties. The number 

of components in the model was estimated with Singular Value Decomposition (SVD) and initialized by entropy minimization5. The initial profiles were iteratively 

optimized using MCR-Alternating Least Squares (MCR-ALS)2, imposing a non-negativity constraint. 

The relative intensities of each component for each voxel were normalized across all voxels from 4 patients, and mapped slice-by-slice for a qualitative validation of 

the model, using the histopathology reports as gold standard. The model’s components were interpreted following the patterns of in-vivo prostate spectral shapes1. 

The component with the highest intensity in the Choline ppm region was further investigated as the most suspicious for the presence of tumor. As a second independent 

quantification method, spectra from all voxels were fitted with LCModel (Fig.1b, c) and the ratio (Choline+Creatine)/Citrate was calculated6. Z-score approach for 

both the relative intensity of the suspicious component from MCR-ALS and the LCModel’s metabolite ratio was used to calculate thresholds to discriminate between 

healthy and cancerous spectra. Different thresholds were calculated for the peripheral zone (PZ) and the central gland (CG) of the prostates. The performance of the 

two methods was compared with the untested data of the 5th patient(456voxels) with a confusion matrix. 

 

Results and Discussion: The optimal number of components, as assessed by SVD, was 4 for the training set of 4 prostate cancer patients (Fig.1). Examples of relative 

intensity maps of the components are presented for a slice in a patient with a tumor with Gleason score 2+3 (Fig.2) and for a patient with an aggressive tumor(Gleason 

score 3+4) (Fig.3). The spectral profile of component 1 has a shape similar to that of healthy prostate spectra, with high levels for Cit (2.6ppm) and low for Cho 

(3.2ppm) and Cre (3.03ppm). In contrast, the spectral profile of component 2, with elevated intensity in the Cho ppm range, is deemed representative for tumor 

spectra. Qualitatively in all 4 patients, the regions of increased levels of component 1 and 2 seemed to correlate with histopathologically healthy regions and regions 

with tumor tissue, respectively. Tentatively, in cases with more aggressive tumors, the intensity levels of component 2 were increased in comparison with less 

aggressive tumors (Fig.3). In the example of the aggressive tumor (Fig. 3), the mean value of the relative intensity of component 2 in 6 voxels located in the tumorous 

region was 0.87±0.05 AU, while in the second case (Fig.2) it was 0.68±0.04AU. The spectral profile of component 3 corresponded to prostate signals that were 

contaminated by lipids, which commonly occurs at the borders of the prostate (comp.3 in Fig.2,3). Finally, the profile of component 4 may arise from water signal 

that was not sufficiently removed.  

The model, built on 1824 spectra from 4 patients, was applied to the 456 untested spectra of the 5th patient.  The defined thresholds for component 2 from MCR-ALS 

(0.36AU for CG and 0.31AU for PZ) and for the metabolite ratio from LCModel (0.37AU for CG and 0.30AU for PZ) were used to classify the spectra as suspicious 

and non-suspicious for prostate cancer. Both methods agreed with an accuracy of 98% in classifying voxels of test patient 5 (Table 1), and the added value of MCR-

ALS that prior knowledge is not required. 

 

Conclusion: MCR-ALS can be used for the extraction of common spectroscopic components without a need of prior knowledge. The components can be used to 

classify prostate spectra as suspicious and non-suspicious for cancer, as well as identify lipids in the prostate. Furthermore, the results indicate the method may also 

assess tumor aggressiveness. Altogether, our approach can be considered as a step towards the development of an automated tool for classification of prostate MRSI 

spectra. 
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Figure 1. a. The spectral profiles of the components extracted with MCR-ALS from 4 prostate cancer patients. 

b. LCModel output of a healthy spectrum with high citrate levels that are also present in component 1. c. 
LCModel output of a cancerous spectrum, with an elevated choline signal at 3.2 ppm that can be observed in 

component 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. a. The relative intensity maps of each component in a slice of a prostate with a cancer lesion. 

The values are normalized across all voxels from 4 patients. b. Histopathology of the closest matching 

slice. A tumor is present with a Gleason score 2+3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. a. The relative intensity maps of each component in a slice of the prostate of a different 

patient with prostate cancer. The values are normalized across all voxels from 4 patients.  b. 

Matching histopathology identified a tumor with Gleason score 3+4. 

 

 

 

Table1. Confusion matrix comparing the performance of the data-driven MCR-ALS approach and LCModel fitting. Both methods had 

their own z-score calculated as the threshold between suspicious and non-suspicious spectra for the presence of prostate cancer. 
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Synopsis: We validated the measured resection margins of the surgical specimens of tongue carcinoma on 7T ex vivo MRI with histopathology using T2 weighted 

MRI. In 3D T2wTSE (250 μm) with an acquisition time of 15-20 minutes, the resection margins was underestimated by 0.5 mm (+/- 1.3 mm). This will be developed 

into a clinical study with immediate re-resection during surgery to prevent adjuvant (chemo)radiotherapy, which is associated with radiation induced side effects. 

Introduction 

Oral squamous cell carcinoma (OSCC) is preferably treated by surgery. Its complete removal is essential for locoregional control and disease-free survival. Inadequate 

resection margins require adjuvant therapy such as re-resection or (chemo)radiation, which causes extra morbidity. In international literature, 30% to 85% inadequate 

resection margins are reported [1]. For tongue SCC, both intraoral ultrasonography (US) and magnetic resonance imaging (MRI) are reported to be very accurate in 

determining tumor thickness and depth of invasion preoperatively. In addition to in vivo imaging, also ex vivo imaging can help to improve the number of adequate 

resections. Since 7T MRI has the potential to visualize ne details, ex vivo 7T MRI of the resection specimen of OSCC can indicate areas with close or positive 

resection margins for immediate re-resection [2] and by that reduce adjuvant radiotherapy treatment and eventually improve oral function and the patient’s quality of 

life by adequate tumor resection. 

Aim 

A feasibility study to optimize the MRI protocol was performed in tongue tumors and compared to histopathology to build experience with ex vivo 7T MRI of 

resection specimen of OSCC in 10 tongue cancer patients. 

Material and Methods 

Ex vivo MR imaging of resection specimens was performed on a Bruker 7T MR spectrometer (BioSpec7T, Bruker, Ettlingen, Germany) interfaced with a Philips 

console. Multislice T2w TSE images (in plane 125 μm slice thickness 1 mm), 3D T2w TSE (250 μm ) and DTI was performed (b-values: 0, 800, 1600 and 3200 

s/mm, 40 directions, 1 mm ). The tumor thickness and the smallest resection margins were measured in the MR images. Hematoxylin and eosin stained sections were 

cut every 3-5 mm and the distance between tumor outline and resection edge was measured and compared with the resection margins on MRI. In addition, MRI and 

histology was spatially correlated. 

Results 

HE stained sections and 7T MRI were compared and showed a small over-estimation of tumor thickness on MRI versus histopathology (1.2±1.0mm), while it slightly 

under-estimated the margin (0.5±1.2mm) (Figure 1). In addition, the tumor on HE stained sections and 3D T2 weighted TSE images were reoriented to match the 

histopathological sagittal slices and visually tumor extent on both 3D and multislice T2 weighted images (Figure 2). DWI showed acceptable co-localization with 

histopathology. Muscle ber tracking showed the directionality of muslce bers in the tongue. The total scan time of the three images was 30 – 45 minutes, depending 

on the size of the specimen. 

Discussion and conclusion 

The resection margins and tumor thickness on 7T MRI diered only slightly from that on histopathology. As the time for evaluation during surgery for immediate 

re-resection has to be limited, acquisition time and evaluation time has to be within 45 minutes, which means that maximum imaging time will be limited to 20-30 

minutes. Therefore, either accelerated image acquisition is needed or only a single MR contrast and acquisition has to be chosen. For optimal 3D spatial correlation 

some rening using only whole mount sectioning and automatic registration between whole mount sections and MR images is desirable. 

In conclusion, the close agreement between histopathology and 7T T2w images is promising for the transfer of ex vivo 7T MRI to a clinical study. 
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Figure 1. Bland-Altman plot of deep margins measured by MRI minus measured by histopathology. Dashed line shows the mean dierence and dotted line the 95% condence interval. As can be seen, 
MRI under-estimated the deep margin by 0.5mm with 95% condence interval of 1.3 mm 

 

 

Figure 2. Two examples of the specimens of two patients with a tongue tumor. Visual evaluation shows an excellent correlation between HE-coupes and 3D T2W TSE images (upper row). Correlation 
between (2D) T2W TSE images. HE-coupes and macroscopic pathological images shows an excellent correlation as well (lower row). 
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Synopsis: Amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI is a potentially useful clinical technique to image brain tumors, but its reproducibility was not yet investigated in 
detail. Our 3T scan-rescan protocol on volunteers and glioma patients revealed high within-session and slightly lower in-between-session and between-day reproducibility, with highest reproducibility 

occipitally and centrally in the brain and lowest at the skull base. The within-session reproducibility for patients was also good, both intratumoral and extratumoral. These results show that APT-CEST at 3T 

MRI renders reproducible values allowing for clinical monitoring of metabolic brain tumors. 

 

Purpose: Amide proton transfer chemical exchange saturation transfer (APT-CEST) imaging can detect increased levels of amides and peptides1,2, which is potentially useful to detect and monitor brain 
tumors like gliomas3-5. While APT-CEST has shown promising results, its reproducibility has not yet been extensively investigated. Good reproducibility is however crucial for clinical follow-up and cut-off 

value determination. This study evaluates the reproducibility of APT-CEST at 3T for both healthy volunteers and glioma patients. 

 

Methods:  

Participants and Study design 

21 healthy volunteers (age 39±11 yrs, 11 women)  and 10 glioma patients (age: 55±15 yrs, 7 women) were scanned at 3T (Vida, Siemens, Erlangen, Germany) using a 20-channel head coil, including whole-

brain 3D T1w and APT-CEST (2.8x2.8x2.8 mm resolution, 7 frequencies with MT pulses (10x 100ms at 2.5μT gaussian pulses) at ± 3.0, 3.5 and 4.0 ppm off-resonance, scan duration: 4m36s) plus a dual-
echo GRE B0 map for geometric distortion correction.6  

Healthy volunteers underwent 3 APT-CEST scan-sessions, while patients underwent one session. Each scan-session contains two consecutive APT-CEST scans and one B0-map. For a detailed description 

of the scan protocol see fig. 1.  

 

Post-processing 

Motion and distortion-corrected APT-CEST maps were calculated as magnetization transfer (MT) asymmetry (MTRasym). APT-CEST unprocessed scans were registered to the 3D T1w images and transformed 

to MNI using ExploreASL and smoothed by a 3.5x3.5x3.5mm FWHM Gaussian filter. PyCharm was used to create voxelwise within-subject standard deviation (SD) maps of the difference between 

sessions/blocks (SDdiff) and further image processing. 

 

Analysis 

A neuroradiologist (VK), with 10 years of experience, manually delineated the hyperintense glioma regions-of-interest (ROIs) on the post-contrast T1w. The MTRasym of tumor ROI was compared to a 

similarly-sized contralateral region and the between-days SDdiff.  

SDdiff maps were calculated for the within-session, in-between-session, and between-day reproducibility. The within-session SDdiff maps of the volunteers were compared to the within-session SDdiff maps of 
the patients. Variance component analysis (Rstudio VCA) was performed for the whole brain, cortical gray matter, deep white matter, thalamus, and putamen. The normal APT-CEST values for healthy 

volunteers were also calculated for these masks and compared to mean tumor values. Finally, the scanning variability was related to the MTRasym effect size between tumor and contralateral tissue. The effect 

size is given by mean_tumor_MTRasym - mean_contralateral_MTRasym. 

 

Results: 

APT-CEST values in healthy volunteers  

Normal whole brain MTRasym ranged between -0.92% and 1.96%  —5th and 95th percentile, respectively — with a mean of 0.49% (Table 1).  

 

SDdiff map 

The within-session SDdiff maps showed a low variance within each session (fig. 2), but increased with larger time periods between scans. The mean voxelwise within-session, in-between-session and between-
days within-subject SDdiff were 0.033 (95th percentile is 0.13%), 0.064 (95th percentile is 0.25%), 0.093% (95th percentile is 0.36%) respectively. The variance was highest in the skull base (within-session, in-

between-session, and between-days SDdiff: 0.57, 1.24, and 1.72%) and lowest occipitally and centrally (within-session, in-between-session, and between-days SDdiff: 0.06, 0.1, and 0.13% and 0.08, 0.15, and 

0.22% respectively for occipital and central regions).  

 

Covariance analysis in healthy volunteers 

The total variance was unexpectedly low and appears to be mainly explained by variability between participants rather than measurement error (Table 2). The variances corroborate the visual findings shown 

by the SDdiff maps (fig. 2). Moreover, the reproducibility decreased with increasing time between scans. 

 

Findings in glioma patients 

The within-session within-subject SDdiff for patients was 0.024% (n=10). Intratumoral mean MTRasym ranged from 0.56 to 3.11%. Contralateral same-sized ROI MTRasym in healthy-appearing tissue were 0.0-

0.94% (fig. 3). For GBM (n=7), the mean MTRasym value of the tumors was 2.27% whereas the mean contralateral MTRasym value was 0.75. The effect size between GBMs and contralateral tissue is 1.52. 

The SDdiff is 6% of the effect size when considering the between-days SDdiff in the healthy volunteers. 

 

Discussion: These findings show that APT MTRasym measurements have good reproducibility for healthy volunteers even over longer periods of time in a clinical setting. Note that the mean between-days 

session SDdiff was much smaller than the absolute APT-CEST values. However, focal signal inhomogeneity in areas close to the skull base can be an issue.  

The in-between scan variance can be caused by the correction of B0 inhomogeneity and potentially also by registration errors.  

Tumors expectedly showed larger APT-CEST values than healthy tissue. The effect size between tumors and healthy tissue was large compared to the mean between-days within-subject SDdiff. Tagao et al. 

used a similar scanning protocol and found comparable results.7 However they looked at mean tumor APT-CEST values, while we also performed a voxel-wise reproducibility analysis on healthy volunteers, 

which allows for more general conclusions concerning broader clinical applications. 

Conclusion:The current study demonstrates that APT-CEST results have a very high consistency between scan timepoints for the entire brain and masked regions including tumor at 3T. APT-CEST can 

therefore be recommended for clinical applications in the brain including monitoring and cut-off value determination. 
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Figure 1. A. Scan protocol for the healthy volunteers. B. Scan protocol for the 

patients.  A session contains two consecutive APT-CEST scans and one B0 map. (A) 
Scans: 1 = baseline, 2 = scan directly after the baseline — i.e., 1-2 = within-session 

reproducibility — scan 4 is a scan 30 min after the first — i.e., 1-4 = between-session 

reproducibility — scan 6 = another day — i.e., 1-6 = between-day reproducibility. (B) 

Glioma patients underwent one session. 

 

Table 1. Mean, 5th percentile, and 95th percentile APT-CEST MTRasym values of different brain 

structures in healthy volunteers.  

Table 2. Variance components shown for factors subject, day, session, and within-session. If we take 

an example tumor MTRasym of 2% and contralateral healthy tissue of 0.5%, the total variance is 

relatively low.  

Figure 2. Standard deviation (SD) maps of the within-subject 

difference between scan sessions 1-2, 1-4, and 1-6 (rows A, B, 

and C, respectively), for all participants (n=21). Higher SD of 

the difference means lower reproducibility. Note how the 

reproducibility lowers as physiological variability seems to 
increase with a larger time difference. 

Figure 3. Single transversal APT-CEST slices of  four 

glioblastoma patients, CEST values in color scale projected 

on the post-contrast T1w image, within the tumor ROI only. 

Red and green boxes are positioned around the tumor and 

contralateral ROIs, respectively. Note the heterogeneous 

hyperintensity in the tumorous regions on the T1 when compared 

to the contralateral region (A-C).  D shows the APT-CEST value 

of a non-enhancing GBM. 
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Deep learning DCE-MRI parameter estimation: Application in pancreatic cancer 

 

 

Synopsis: Quantitative physiological perfusion parameters can be obtained from dynamic contrast-enhanced (DCE)-MRI. Conventionally, fitting is done with the 

non-linear least squares (NLLS) approach. However, the NLLS-fit suffers from long processing times and results in noisy parameter maps. In this work, we 

implemented a physics-informed gated recurrent unit (GRU) network with attention layers for estimating physiological parameters using the extended Tofts model. 

In simulations, we show it outperforms NLLS with more accurate and precise parameter maps. We show our method produced substantially less noisy parameter 

maps than NLLS in a fraction of the time in pancreatic cancer patients. 

 

Introduction: Dynamic contrast-enhanced (DCE)-MRI is a promising technique for quantifying tissue perfusion. Conventionally, tracer-kinetic (TK) modelling is 

done with non-linear least squares (NLLS) fitting. However, the NLLS-fit has long processing times and results in noisy parameter maps. 

Recently, deep neural networks have been explored to quickly estimate the physiological parameters from DCE-MRI. However, these networks focussed on 

acceleration but not on outperforming NLLS, and only were applied to brain DCE. Moreover, most approaches were specific to a fixed acquisition length and unsuited 

for long-range temporal dependencies. 

Hence, we developed a novel network that utilizes a gated recurrent unit (GRU) combined with attention layers to predict physiological parameters from DCE-MRI. 

We validated it in simulations and applied it to DCE data from pancreatic ductal adenocarcinoma (PDAC). The GRU network handles input with different acquisition 

lengths and the attention layers allow handling long-range temporal dependencies. 

 

Methods: We investigated two types of networks for estimating the extended Tofts TK parameters from DCE data: temporal and spatiotemporal. The temporal 

networks predict the physiological parameters based on the concentration time curve per voxel while the spatiotemporal networks use convolutions to include spatial 

information. Our temporal networks were a Fully Connected Network (FCN; 4 layers, width: [320,160,80,40]), a Long Short-Term Memory (LSTM) and the GRU 

(Figure 1). Our spatiotemporal network was a CNN, as introduced by Ulas et al., 2019. 

We used an unsupervised physics-informed loss function that was the mean-squared-difference between the input data and forward extended Tofts modelling of the 

returned TK-parameters. Training parameters were: batch size 256/8 (temporal/spatial-temporal), ADAM optimizer, 50 epochs, an adaptive learning rate that started 

at 1e-3 and was multiplied by 0.1 every time validation loss was not improved for 3 consecutive epochs. 

Simulations: We constructed a synthetic dataset of 500,000 concentration curves with added noise (Signal-to-Noise Ratio [SNR] ranging from 5-100). Concentration 

curves were simulated using the extended tofts model with random values for extravascular extracellular space (ve) [0-0.7], plasma volume fraction (vp) [0-0.05] and 

rate constant for efflux of gadolinium (kep) [0-2]. Data acquisition was simulated for 160 dynamics at 1.75s per frame. The precision was quantified by the standard 

deviation of the errors and the accuracy was quantified by the absolute mean errors between the predicted and ground truth parameters. In additional simulations, we 

varied the acquisition length from 80-160 time points to assess whether the GRU could handle different lengths. 

In vivo: The best performing temporal network and the CNN were evaluated in 31 patients with PDAC, of which 16 received repeated baseline (test-retest) scans and 

15 received a scan before and after chemo-radiotherapy. We used a 3D T1-weighted spoiled ultrafast gradient echo sequence with: FOV=400x400x75mm3, 

resolution=2.5mm3, TR/TE=3.2/2.0s, FA=20°, Sense=3.6/1.5, frame-rate=1.75s and 100 dynamic scans. We used the root-mean-square error (RMSE) and structure 

similarity index measure (SSIM) to assess the performance of the networks. Repeatability was determined with a Bland-Altman analysis of the test-retest dataset. 

Then, the treated patients were added to determine the potency to detect significant changes in individual patients receiving treatment. 

 

Results: Simulations: All networks showed higher precision and accuracy compared to the NLLS-fit for SNR values up to 40 (Figure 2), particularly for ve. The GRU 

outperformed the FCN when different acquisition lengths were used (Figure 2). Considering the flexibility to acquisition length and the smaller systematic errors in 

the kep and vp parameter, the GRU was selected for in vivo evaluation. 

In vivo: The CNN and GRU both showed less noisy parameter maps than the NLLS-fit in vivo (Figure 3), especially for ve. There was little difference between the 

networks on SSIM and RMSE (Figure 4), where GRU had a marginally higher SSIM and lower RMSE than NLLS-fit, suggesting it more accurately describes the 

data. All networks were substantially faster than NLLS-fit. The GRU had similar repeatability as the NLLS-fit (Figure 5). The test-retest precision of the kep and ve 

parameters from the CNN were better (tighter 95% confidence interval), while the variation in patients receiving treatment remains similar, suggesting CNN was best 

at picking up treatment effects. 

 

Discussion: We successfully implemented several neural networks for predicting pharmacokinetic parameters from DCE data. These networks are superior to the 

conventional NLLS-fit. With simulations, we showed that our suggested networks are more accurate and precise for typical SNR. Our networks perform good in 

vivo, with less noisy parameter maps and similar (GRU) to better (CNN) repeatability. Finally, our networks are substantially faster than conventional approaches. 

Results suggest that the addition of spatial information allows the CNN to outperform the GRU in vivo. However, we see an increased vp in the liver for the CNN in 

Figure 3. Without simulations, it is hard to determine whether this is a systematic error of the CNN or alternative methods. Furthermore, our GRU is able to perform 

well on data from any acquisition length, whereas the CNN is limited to a fixed length. Therefore, we suggest using the GRU until the CNN is further improved and 

validated. 

 

Conclusion: Our networks for analyzing DCE output more accurate and precise parameter estimates than conventional NLLS fitting in a fraction of the time. This 

opens the way for clinical DCE. 
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Figure 1. LSTM/GRU architecture for predicting DCE-MRI parameters from one concentration        Figure 2. Standard deviation error (top) and absolute mean error (middle) of the networks on all 

curve with N datapoints. Attention is added to include intermediate information from hidden outputs.       physiological ground truth parameters. Bottom row shows the standard deviation error of the  

                                                                                                                                                                        networks on predicting the ground truth parameters for varying datapoints.      

 

Figure 3. Parameter maps of a slice of the abdominal region created by 3 different models:  Figure 5. Bland-Altman plots of the neural network approaches to fitting of the physiological 

parameters of DCE-MRI concentration curves. The mean and difference is shown between the  

intersession repeatability patients (blue dots) and the mean and difference between pre- and  

post-treatment patients who received chemoradiation therapy (colored crosses). 

 

Figure 4. Evaluation of the NLLS, GRU and CNN on our patient dataset. 
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Synopsis: In non-steady-state multi-parametric quantitative MRI (e.g. MR-STAT or MR Fingerprinting (MRF)), it is a non-trivial task to devise good sequences of 

time-varying flip angles. Recent work addresses this issue, albeit assuming a single-voxel approach, i.e. the k-space encoding is not taken into account when 

optimizing. In this work we show, using examples from MR-STAT reconstructions and using a Cramer-Rao based BLAKJac analysis, that two apparently similar 

sequences can have vastly different outcomes when applied in an actual (2-dimensional) measurement setup - showing that the context of encoding is very relevant. 

 

Purpose: In MR-STAT1 as well as in MR Fingerprinting2 (MRF) and in Hybrid-state imaging3, flip angle trains are usually time-varying. This gives many degrees 

of freedom to devise good sequences of flip angles, which is a non-trivial task. Recent work addresses this issue3-9, albeit assuming a single-voxel approach, i.e. the 

k-space encoding is not taken into account when optimizing. In the context of MR-STAT multi-parametric reconstructions, in this study we use experiments as well 

as BLAKJac12, an analytical framework to analyze the combined effects of RF and gradient-encoding, to show that two sequences with equivalent performance in a 

single-voxel approach can have vastly different outcomes when applied in an actual (2-dimensional) measurement setup. 

 

Methods: Single-slice (2D) MR-STAT scans were made of a phantom setup and of a volunteer. The phantom setup consisted of 16 vials of the Eurospin II 

phantom set10 plus one kiwifruit in order to visually assess the rendition of high spatial frequencies. In addition, a single-voxel scan (without encoding gradients) 

was done of on a homogenous central slice of vial 7 of the set. 

We used a Cartesian pseudo-SSFP sequence on a 3T scanner (Philips Elition), with TR=10ms and TE=5ms. we define two RF tip angle patterns, called 

"Incoherent" and "Coherent", as shown in fig. 1. The latter is chosen to be in-sync with the phase-encoding pattern. These two have almost identical performance 

based on a single-voxel Cramer-Rao based analysis (see table 1). 

For the 2D scans, the acquisition voxel size was 1mm x 1mm, slice thickness of 5mm, with a Field Of View of 224mm, requiring 224 phase-encoding steps. The set 

of phase-encoding steps was repeated 5 times in order to allow MR-STAT reconstruction11 of maps of proton density, T1 and T2. In total, 1120 readout-lines were 

acquired. This setup was re-scanned 10 times which led to 10 separate reconstructions, in order to allow for an estimate of standard deviations in the resulting maps. 

 

In the single-voxel scans, the phase-encoding was switched off. The readout-gradient was still active, to obtain more measurement points over a homogenous region 

of the tube. The slice thickness was chosen to 1.5mm. This was 20 times re-scanned and re-reconstructed. For the phantom scans (2D and single-voxel), standard 

deviations (SD) were calculated per voxel over the 10 (or 20) re-scans. These SD were averaged over regions of interest (ROI) for all the vials for 2D. 

Concurrently, a Cramer-Rao based BLAKJac analysis was applied to predict the outcomes of the standard deviations. 

 

Results: The Cramer-Rao based BLAKJac analysis results are provided in table 1, indicating that the two sequences are expected to have identical performance on 

single-voxel, yet to be different by a factor of 3 to 7 on a 2D measurement. 

The results of the single-voxel scan are summarized in the left half of table 2. The differences in SD between the Coherent and Incoherent sequences are not 

significant. 

Figure 2 shows the phantom results, showing very poor rendition of the Coherent sequence. In addition, the measured standard deviations - averaged over all vials - 

is 2.9 times (T1) resp. 3.7 times (T2) higher on the Coherent sequence compared to "Incoherent". This ratio is slightly smaller than predicted; this is due to early 

stopping of the iteration of the Coherent sequence, which has not reached a stable result after 50 iterations, while "Incoherent" usually stabilizes already after 6 

iterations. 

Figure 3 shows the in-vivo results. The measured standard deviation, averaged over the whole image, is a factor of 2.0 (T1) resp. 2.4 (T2) higher for the Coherent 

sequence compared to "Incoherent". Also the bias (deviation from literature values) is substantially higher. 

 

Discussion: The two test sequences of RF angles perform similarly in a single-voxel setup, as was predicted by the Cramer-Rao based analysis. In the absence of 

phase-encoding, the calculated performance is identical. 

Yet, in the context of gradient-encoding, it really does matter whether the RF sequence shows incoherence with the phase-encoding pattern or whether it 

synchronizes to it. Without incoherence, all spatial frequencies are measured under almost identical sensitivities to T1 and T2, which makes the inversion problem 

ill-posed. Indeed, in the context of encoding, the Coherent sequence shows roughly 3 times more noise than the Incoherent sequence, as predicted by BLAKJac. 

 

Conclusion: A sequence that is optimal in a single-voxel approach might be suboptimal in a setup where phase-encoding (or, encoding in general) is applied. So 

the Cramer-Rao based analysis has to take the encoding pattern into account, which is effectively done by our BLAKJac analysis. 
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Figure 1: two sequences of 1120 RF pulses: both are sinusoidaly varying from 0 
degrees to 50 degrees, with an RF phase of 0. The "Incoherent" sequence has 4 
lobes, while "Coherent" has 5 lobes and is thereby in-sync with the phase-
encoding pattern. 

Figure 2: phantom results for the Incoherent sequence (a,b) and the Coherent sequence (c,d). 

Figures (a), (c) and (e) refer to T1 maps, (b), (d) and (f) to T2. From (d) and (f), it is apparent that 
the Coherent sequence gives a very poor rendition of T2 values with substantially higher noise 

levels (g) 

Figure 3: volunteer results, Incoherent (a,b) vs. Coherent (c,d). The small 

inset shows the localized standard deviation, multiplied by 8; these insets 
show that the deviations are higher in the Coherent sequence for all brain 

regions. 

Table 1: The Cramer-Rao based analysis (BLAKJac) prediction of noise 

standard deviation values (arbitrary units) on T1- and T2-maps for the two 
sequences; this indicates that the Incoherent sequence is greatly superior to 

the Coherent sequence when taking encoding into account. 

Table 2: in the single-voxel setup (absence of phase-encoding), noise 

standard deviations have been calculated over 20 different 

acquisitionreconstruction combinations. They show almost equivalent 
performance for the two sequences. The right half shows the noise levels in 

the 2D experiment, i.e. with gradient-encoding: the standard deviation has 

been calculated over the measurements and then averaged over all vials. 
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Synopsis: In this study, we investigate the vascular contribution to the BOLD signal by comparing purely non-neuronal-related changes in the BOLD signal induced by gas 

manipulations with neuronal-related hemodynamic changes in the BOLD signal for different vascular compartments. Different vascular compartments were targeted by employing 

gradient-echo and spin-echo in combination with cortical depth estimations and pial vein segmentations. Our findings suggest that the increase in macro-vascular baseline venous blood 

volume (CBVv0) is the main contributor to the large GE-BOLD signal increase towards the pial surface and that normalization for this CBVv0-dependence is possible using a hyperoxia 

breathing task. 

Introduction: The Blood-Oxygen-Level-Dependent (BOLD) signal1,2 reflects neuronal activity indirectly via changes in local venous oxygen saturation regulated by neurovascular 

coupling; changes in local cerebral blood flow and volume in response to neuronal activity. This complicates the interpretation of the BOLD signal as a direct representation of neuronal 

activity since it may also reflects signals having vascular origins. This confounding influence increases when measuring at the laminar scale; particularly since vascular architecture 

and density change across cortical depth3-5. Therefore, quantifying the contribution of different vascular compartments to the BOLD signal is crucial. We estimate the contributions of 

pial veins, intra-cortical veins, and micro-vessels with respect to cerebrovascular reactivity (CVR) and venous blood volume capacity (CBVv0). The hemodynamic response functions 

(HRF) were estimated following brief visual stimulations, while non-neuronal hemodynamic changes were induced by CO2 and O2 administration. The different vascular compartments 

were targeted by employing spin-echo (SE)-BOLD, whose sensitivity is weighted predominantly to the capillaries, and gradient-echo (GE)-BOLD, which is sensitive to all vessel 

sizes6,7. A hyperoxia normalization method is proposed to correct for CBVv0. 

Methods: 

Six healthy volunteers participated in a 7T fMRI session, while performing a hypercapnic (+3, +5, +8, and +10mmHg PetCO2) and hyperoxic (+350mmHg PetO2) breathing task using 

a RespirActTM device combined with brief visual stimuli (black/white random orientation patterns on a grey background of 0.2s duration, ISI: 3-20s) (Fig.1.). Functional volumes were 

acquired with GE-EPI (voxel size=1.0mm3, TR/TE=850/27ms, FA =50°, and FOV=7x128x128mm) and SE-EPI (voxel size=1.5mm3, TR/TE=850/50ms, FA=130°, and 

FOV=7.5x190x190mm) covering the early visual areas using two 16-channel high-density surface coils.  

Cortical laminae (top, middle, deep) were segmented from T1-weighted scans (Fig.2.c) using LayNii8. Pial veins were segmented from T2*-weighted anatomical volumes based on 

their dark appearance and susceptibility difference using two tools, BrainCharter9 and Nighres10, which worked complementary (Fig.2.a,d). These pial veins and laminae were linearly 

warped to functional space giving a probability for each cortical depth level to be present in each voxel (Fig.2.e.).  

A General Linear Model was used to obtain estimates of the percent BOLD signal increase following hyperoxia and hypercapnia, using the end-tidal gas traces (∆PetCO2) as regressors. 

The estimated weights correspond with the O2-response (CVRo2) and CVRco2 in %∆BOLD/mmHg. Subsequently, the HRF curves were estimated with a Finite Impulse Response11-

13. These HRFs were quantified with the amplitude and time-to-peak (TTP). The estimated HRF amplitudes were divided by the amplitude of the CVRo2 to account for CBVv0 

dependence14 in the BOLD signal and extract the neuronal component of the HRF15-17. 

Results: We found that the magnitude of CVRo2 was higher for GE (mean=0.017, se=0.002) compared to SE (mean=0.010, se=1e-4) with increasing difference from deeper laminae 

to top laminae and pial veins (F(1,5)=13.2, p=0.014). Additionally, a linear increase in CVRo2 towards the pial surface was observed for GE (z=-7.8, pHolm<0.001) and SE (z=-2.8, 

pHolm=0.006). A similar trend was observed for CVRco2 for GE (z=-7.8, pHolm<0.001), but not for SE (z=-1.6, pHolm<0.15). For the estimated HRFs to the visual task, we found larger 

HRF amplitudes for GE (mean=2.05, se=0.18) in comparison with SE (mean=0.91, se=0.8) (F(1,5)=40.7, p=0.001). HRF amplitudes are linearly increasing towards the pial surface for 

GE (z=-8.3, pHolm<0.001) but not for SE (z=-1.7, pHolm=0.096). The CBVv0 normalized HRF amplitudes showed no difference between sequences (F(1,5)=6.0, p=0.056), but an inverse 

relationship across cortical depth was found; decreasing from deeper laminae towards the pial surface (z=3.1, pHolm=0.005). No difference was observed in TTP between scan sequence 

(F(1,4)=0.21, p=0.67) nor across cortical depth (F(3,15)=2.44, p=0.105) 

Discussion: We investigated the contribution of micro-vessels, intra-cortical veins, and pial veins to the BOLD signal formation during visual stimulation and different breathing tasks. 

We found an increase in relative macro-vascular CBVv0 from deeper laminae to top laminae and pial veins, as measured by the GE-CVRo2 compared with SE-CVRo2 (Fig.4.). 

Hypercapnia mainly affected the macro-vasculature and to a lesser extent the capillaries, as seen by the CVRco2 (Fig.4.), suggesting that vessel reactivity is proportional to vessel size 

or composition. The well-known GE HRF amplitude increase towards the pial surface was observed17-19, and was extended in this study with the pial veins, which displayed an even 

more prominent increase (Fig.5.). Drainage effects could be another factor contributing to this HRF amplitude increase. However, in this study, no significant differences in TTP (Fig.5.) 

were observed between sequences nor across cortical depth suggesting that the CBVv0 was the main contributor to the GE-BOLD HRF amplitude which is consistent with recently 

published models20. No difference in normalized HRF amplitude was found between GE and SE (Fig.5.). This implies that the CBVv0 contribution of the macro-vasculature is reduced, 

and the signal changes rather reflect the visual task, making the CBVv0-normalization preferable for investigation of brain metabolism. 

Conclusion: We found that the BOLD signal from the macro-vasculature, as measured with GE-BOLD, is affected by CBVv0 as we observed a linear HRF amplitude increase from 

deeper laminae to top laminae and pial veins, which coincides with an increase in CVRo2. In contrast, the SE-BOLD contained limited purely vascular contributions. Therefore, the 

BOLD signal caused by the micro-vasculature predominantly reflects neuronal processes. Normalization of GE-BOLD signals by CBVv0 yields a similar laminar profile as SE-BOLD. 
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Fig. 2. Top row: Pial veins mask (a), cortical laminae as measure of cortical depth together with pial veins 

(b), and visual area mask (c) superimposed on the T2*-weighted scan. Bottom row: Posterior view of 3D 
render of the pial vein mask (d) and probability mask of cortical depth levels, where each pixel-color is 

a weighted combination of the four measures of cortical depth, superimposed on functional image (e). 

 

Fig. 1. Time course of PetCO2 (a) and PetO2 (b) of a representative participant 
and time course of the expected BOLD response for the event-related visual 

task (c). Colors indicate the different gas breathing task (green = baseline (gas 

mixture resembling room-air), blue =+5PetCO2, purple = +10PetCO2, and red 

= +350PetO2). 

Fig. 3. Mean CVR to O2* (left panel) and CO2 (right panel) breathing tasks 

acquired with GE (dark blue) and SE (light blue). The error bars refer to the 

standard error of the mean (SEM) across participants. *Reactivity to O2 is 

strictly no vascular reactivity. 

 

Fig. 4. Example of the estimated HRF for a representative participant visualized across 

cortical depth for two hypercapnic gas conditions acquired with the GE-BOLD 
sequence. Shading indicates the 95%-confidence interval. For this participant, it is 

clearly visible that the HRF amplitude falls off towards the WM (deep laminae) and 

during hypercapnia compared with baseline. 

 

Fig. 5. Quantification of the HRFs averaged across subjects for GE (top row) and 

SE (bottom row): HRF amplitudes (left column), for CBVv0 normalized HRF 

amplitudes (middle column) and TTP (right column), colors and markers indicate 
different breathing tasks. The error bars refer to the standard error of the mean 

(SEM) across participants. Note that the +3,+8-run was not performed by all 

participants and may therefore have a larger SEM.  
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Combining the benefits of 3D acquisitions and spiral readouts in VASO fMRI 
 

 

 

 

 

Synopsis: VASO fMRI can provide beneficial localization specificity and quantifiability compared to the commonly used BOLD contrast. Previous work has also shown the benefits 

of using spiral readouts compared to Cartesian.  

In this work, we explore the benefits of 3D stack of spirals readouts and compare it with the current state of the art 3D-EPI readouts for VASO fMRI. The sequence implementation is 

done using Pulseq, images were reconstructed using gpuNUFFT; functional analysis with an openly available pipeline. We find that a tSNR efficiency improvement of a factor of 2.5 

over EPI is achieved using the proposed spiral implementation. 

Introduction:  It has previously been shown that fMRI methods that measure cerebral blood volume such as, VAscular Occupancy (VASO) [1] can outperform the most commonly 

used BOLD techniques with respect to its physiological interpretability and its localization specificity; this is especially the case at UHF and at a high spatial resolution (<1.5 mm) [2]. 

Some of the main limitations of VASO are BOLD contamination (which affects the VASO contrast), limited detection sensitivity, and temporal sampling efficiency. For the BOLD 

contamination, it has been shown that a BOLD-corrected VASO image can be obtained by means of dynamic division of concomitantly acquired control images [3]. To overcome the 

limitations set by low temporal sampling efficiency, previous work has suggested combining the efficiency of spiral k-space sampling with simultaneous multi-slice acquisitions [4]. 

For high-resolution fMRI, however, 3D readouts can be advantageous over 2D [2].  

The purpose of this study is to combine the benefits of 3D acquisitions and the efficiency of spiral readouts to obtain VASO images at sub-second TR. This is possible using a 3D stack 

of spirals (SOSP) readout which has previously been advocated as an efficient framework for BOLD fMRI [5]. Here, we demonstrate that fMRI with VASO contrast can be obtained 

using SOSPs, allowing for shorter echo times to improve temporal SNR, remove BOLD contamination and reduce acquisition time. 

Methods: A 3D stack of spirals SS-SI VASO method was implemented using Pulseq [6], a framework that allows for rapid prototyping and implementation of sequences in the scanner. 

For BOLD contamination correction, a BOLD weighted control image was acquired right after the VASO one [2]. The VASO inversion was implemented by means of a 10 ms TR-

FOCI pulse [7] applied 900 ms before the first excitation pulse of the spiral-out readout module. The sequence diagram used in this work is shown in Figure 1.  

To confirm the stability of the novel sequence setup, a healthy volunteer was scanned using a 7T scanner, SIEMENS Healthineers while performing a motor task (block-design). Two 

different scenarios were tested: 1) low-resolution with parameters of 1.4x1.4x1 mm3, 24 slices, TRvol=767 ms, TE=2.5 ms, TI1=1283 ms with in-plane acceleration of 2.2 and 2) high-

resolution: 0.9x0.9x1.0 mm3, 24 slices, TRvol=1381 ms, TE=2.5 ms, TI1=1590 ms with in-plane acceleration of 2.2. As a reference, a Cartesian 3D-EPI [8] VASO was acquired with 

the same task and spatial resolution. The desired voxel size, coverage, inversion delay and acceleration was matched to the protocols of SOSPs. In order to (partly) account for the lower 

sampling efficiency of the Cartesian readout compared to spirals, partial Fourier imaging of 6/8 was used. The TE and TR of the Cartesian readout were kept as short as possible with 

TRvol/TE=2319/20 ms (for low-resolutions) and TRvol/TE=3400/36 ms (for high-resolutions), respectively. The image reconstruction was performed using the open-source software 

gpuNUFFT [9] and a CG-SENSE reconstruction. For functional analysis, the openly available VASO pipeline [https://github.com/layerfMRI] consisting of Motion correction, BOLD 

correction and conventional quality measures (tSNR, mean, GLM statistics) was used to analyze both the SOSPs and 3D-EPI acquisitions. 

Results and Discussion: Figure 2 shows various quality metrics of the low-resolution SOSPs data. Figures 3 and 4 show the activation maps obtained from the low and high-resolution 

acquisitions respectively. Figure 5 shows that for both low and high-resolution acquisitions a higher tSNR efficiency can be obtained with the proposed implementation. Especially in 

the thermal noise dominated regime of the high-resolution VASO, the spiral approach outperforms the Cartesian sampling by a factor of 2.5. This is expected, as from cumulative gains 

of improved signal sampling, including shorter echo times with reduced T2*-decay and faster sampling with more images per unit of time. Without full integration of off-resonance 

correction in the spiral reconstruction scheme yet, the signal appears blurrier in the SOSPs compared to the Cartesian 3D EPI. Note however that this form of blurring refers to the 

signal only, not the noise. Thus, we do not expect that the tSNR estimates presented here are affected by this. 

Summary and Conclusion: In this work, we have shown that a fast implementation of a VASO fMRI with a 3D-SOSPs readout can be achieved using Pulseq. The preliminary 

results indicate that with the current implementation activation maps can be obtained at sub-second TR with considerable high tSNR. Even though spiral sampling allows for flexible 

acquisitions of fMRI data, the reconstruction is more challenging compared to conventional Cartesian sampling. Further work will focus on correcting for off-resonances, optimizing 

the spiral trajectory, implementing acceleration in the kz direction, and reconstruction speed up. With this, we expect to be able to observe all the benefits of combining the efficiency 

of spirals and 3D acquisitions applied to VASO fMRI. We believe that the developed acquisition and analysis tools will be useful tools for future mesoscopic fMRI experiments at 

UHF, including the human 9.4T and 11.7T scanners available to this project. 
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Synopsis: High-resolution blood volume-sensitive fMRI VASO can capture functional signal changes with high localization specivity compared to conventional 

BOLD sequences. However, it suffers from reduced sampling efficiencies and lower detection sensitivity. Here, we overcome these limitations by combining VASO 

contrasts with the high efficiency of multi-echo enabled spiral k-space sampling and CAIPI-optimized SMS acceleration. We find that spiral sampling enables faster 

VASO acquisitions than possible with Cartesian EPI sampling.  For high spatial resolutions (1.25mm), we confirm that the proposed method is insensitive to large 

draining veins while having more stable fMRI signals (higher tSNR). 

INTRODUCTION 

Blood-volume-sensitive (VASO) fMRI[1] can be advantageous compared to conventional GE-EPI-based BOLD methods, especially at ultra-high field or when high 

spatial resolution is required. VASO provides improved spatial specificity down to the level of cortical layers and columns, and allows the quantification of 

meaningful physiological parameters. Its neuroscientific application, however, is limited by BOLD-contrast contamination and temporal sampling inefficiency. 

VASO fMRI acquisitions are conventionally performed with Cartesian EPI readouts, which put limits on the shortest echo time (TE) and readout durations 

achievable, especially for high resolution studies. 

To overcome these VASO fMRI limitations, specifically to achieve faster acquisitions at a shorter echo time, free of BOLD contamination, we combined the 

efficiency of spiral k-space sampling and SMS[2] acceleration with blood-volume-sensitive VASO contrast. We used two different spiral readout schemes to 

perform interleaved VASO-BOLD acquisitions to explore the feasibility of VASO fMRI with 2D-SMS spiral readout at ultra-high field. The flexibility and 

efficiency of spiral readouts have been previously demonstrated at 7T, including BOLD fMRI acquisitions[3,4,5]. Spiral sampling enables faster VASO acquisitions 

than previously possible for given resolution and coverage requirements. Furthermore, for high spatial resolution we show that the proposed method is less sensitive 

to large draining veins; which allows for better separation of fMRI signals from ‘kissing’ gyri, e.g. as in sensory and motor cortex.  

  

METHODS 

Two spiral readout schemes were implemented in a slice-selective slab inversion (SS-SI) VASO[6] sequence in the vendor-provided IDEA environment (VB17A-

UHF) (Figure 1): 1) dual-echo spiral out-in readout for simultaneous acquisition of VASO and BOLD contrasts at 2mm3 iso, nominal TE1/TE2=2.5ms/27.5ms, 

TRVASO=1350ms, TRBOLD=350ms 24 slices, SMS-factor=2. 2) High resolution spiral-out readout at 1.25x1.25x1.2mm3 resolution, TE=2.5ms, TRVASO=1500ms, 

TRBOLD=500ms, 30 slices, SMS-factor=2. Data was acquired on a 7T Siemens scanner (SIEMENS Healthineers). Cartesian acquisitions with matched parameters 

were also performed (TE2mm/TEhighres=11/19ms). The VASO specific inversion was implemented by means of a 10 ms TR-FOCI pulse 950 ms before the first 

excitation pulse of the readout module. 9-minute runs were acquired with a visuo-motor functional block-design task (30/30 TRs ON/OFF). The image reconstruction 

of the spiral data was performed with Minimal Linear Network reconstruction that is trained on session-specific B0 maps [7]. No smoothing was applied during any 

stage of the analysis in SPM (MOCO), AFNI, FSL (for GLM), and LayNii (for profile plot). We applied a T2* deblurring in the pre-processing of the spiral data 

(Figure 4). 

 

RESULTS 

Figure 2 shows the mean image and tSNR maps of the VASO time series, corrected for BOLD contamination. Compared to Cartesian acquisitions, spiral 

acquisitions at very short TE show superior temporal stability for the VASO contrast. The difference between the tSNR of spiral and Cartesian acquisitions is 

especially highlighted in the high resolution acquisitions as the Cartesian EPI TE becomes longer. For the dual-echo VASO-BOLD acquisitions we show that the 

visuomotor task leads to strong signal changes in both CBV and BOLD. In the high resolution VASO acquisitions, spiral images resulted in stronger activation 

maps compared to Cartesian images (figure 3B). Additionally, VASO shows higher spatial specificity compared to BOLD (figure 3C): this is visible in the profiles 

as two separate activations for M1 and S1 in the VASO signal, whereas the BOLD signal generates an unspecific peak over sensory and motor cortices.  

 

DISCUSSION AND CONCLUSIONS  

We combined non-Cartesian spiral readouts with blood volume sensitive VASO contrast preparations and showed the feasibility of such technique in a task-based 

fMRI experiment at 7T. The proposed approach provides superior signal stability, unprecedented sampling efficiency (sub-second TRs), and avoids unwanted 

sensitivity to large veins. The technique might become a valuable tool for neuroscientific applications that require high spatio-temporal resolutions. Extension of the 

proposed 2D approach to 3D stack-of-spirals is desirable as benefits of 3D VASO acquisitions have previously been shown[8].  
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Figure 1 (above): Sequence setup: Two different spiral readout modules 

(shown in green) were implemented after a VASO contrast generation module 

(shown in red). The readout modules were run twice to acquire interleaved 
VASO and BOLD volumes. For efficient SMS unaliasing, CAIPI shifts were 

played out during the signal acquisition along the spiral trajectories. 

 

Figure 2 (rigjht): Voxel-wise tSNR maps of the low resolution dual-echo 
spiral VASO and BOLD and high resolution VASO acquisitions. 

Comparisons to the reference Cartesian acquisitions are shown on the right 

side 
 

Figure 3 (below): A)VASO and BOLD activation maps obtained from the 

low resolution dual-echo spiral acquisitions. The VASO data refer to the 
first echo, the BOLD data refer to the second echo.B) Comparison of the 

high resolution spiral and Cartesian VASO acquisitions. Note the larger 

scaling of the z-score color code.C) BOLD and VASO activation maps in 
the motor cortex, obtained with the spiral acquisitions. The activation 

projection from an ROI in sensorimotor cortex shows the higher spatial 

specificity of VASO compared to BOLD. 

 

Figure 4. 

Implementation of 

a T2* blurring 
correction of spiral 

images. The top 

panels depict the 
expected 

broadening of the 

imaging point 
spread function for 

center-out spiral 

trajectories with 
T2*-decay during 

the echo-planar 

readout. We 
included such T2*-

decays into the 

signal model [11] to 
retrospectively 

account for T2*-

blurring. This 
approach allowed 

us to retain the 

high-resolution 
signal fidelity of 

the VASO contrast 
(at the cost of 

noise 

amplification). 
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Synopsis 

Quantitative MRI of the extra-ocular muscles might have diagnostic value and play a role in therapeutic monitoring in myasthenia gravis (MG). Our data show a slight increase in 

volume, fat fraction and T2water in extra-ocular muscles of MG patients compared to controls. Volume and fat fraction changes were most pronounced in chronic MG patients, T2water 

changes were most pronounced in recently diagnosed and untreated MG patients. The absence of gross structural changes implies that eye muscle weakness might be reversible, even 

in chronic patients with residual ophthalmoplegia.  

Abstract 

Introduction 

Quantitative MRI of the eye muscles, or the extra-ocular muscles (EOM), might have diagnostic value and play a role in therapeutic monitoring in myasthenia gravis (MG).1 Diplopia, 

double vision, is a hallmark of myasthenia gravis and caused by relative weakness of the four recti eye muscles (lateral rectus [LR], medial rectus [MR], inferior rectus [IR] and superior 

rectus [SR]) in this synaptic disease.2 In Chronic progressive external ophthalmoplegia, a mitochondrial disease with EOM involvement, atrophy and fat replacement of the EOM was 

previously observed.3 Quantitative MRI of the EOM was shown to be feasible in a small group of patients.4 Now we aimed to explore structural differences of the eye muscles in a 

large group of myasthenia gravis (MG) patients using quantitative MRI and  compared this to healthy controls and CPEO patients. 

Methods 

18 recently diagnosed MG (58±20yrs), 18 chronic MG (51±17yrs), 11 seronegative MG (58±8yrs), 5 CPEO patients (52 ± 12yrs) and 11 healthy controls (58±13yrs) were scanned at 

7T (Philips). Scans included a 3-point-Dixon (TE/TR/FA/ΔTE:2.4ms/10ms/3°/0.33ms) and two multi-echo spin-echo (ME-SE) sequences (20 echoes, ΔTE/TR: 9m/4000ms) planned 

perpendicular on the EOM for each eye. Example scans for EOM volume and fat fraction measurements are demonstrated respectively in figure 1A and 1B. MR-scans were semi-

automatically 3D-segmented to determine EOM volume and fat fractions (FF) (figure 1C). Data from the Dixon acquisition were fitted using an in-house developed water-fat separation 

Matlab script. T2water data obtained by fitting the ME-SE echoes using a dictionary fitting method using extended phase graph (EPG) algorithms including B1 in the model.5,6 

Measurements were compared between CPEO, MG groups and healthy controls groups using an ANOVA per EOM with Tukey post-hoc analysis. A separate ANOVA was performed 

including only the healthy controls and MG groups to test whether the MG groups differ from the healthy controls. Correlations between qMRI measurements were tested using Pearson 

correlations, after pooling the MG groups. The T2water between the left and the right orbit was compared using an independent T-test. 

Results 

Differences in volume between healthy controls, CPEO and MG groups were observed (e.g. respectively for MR, 569±129, 603±106, 635±140, 520±85 and 442±114 mm3, healthy 

controls, recent MG, chronic MG, seronegative MG and CPEO,  p<0.01, figure 2). The volume differences where overall IR>MR>LR. For the CPEO patients post-hoc tests showed 

the volume of the LR, MR and the SR to be significantly smaller than the other groups. Fat fraction was slightly elevated in CPEO and all MG groups, (e.g. respectively for LR, 12±2%, 

15±4%, 15±5%, 12±3% and 20±10%)., figure 3) and were overall SR>IR>LR. In CPEO patients the fat fraction was significantly higher than the other groups for all four EOM. A 

positive correlation between EOM volume and fat fraction was present for the SR (r=0.41, p < 0.0001) and the IR (r=0.24, p < 0.05) in MG patients. On the contrary, a strong negative 

correlation between EOM volume and fat fraction was observed in the LR (r=-0.86, p < 0.005) and MR (r=-0.74, p < 0.05) in CPEO patients. The T2water was significantly different 

between the groups in the MR and post-hoc analysis shows the difference is caused by a higher T2water in the recently diagnosed MG patients (respectively 25.5±2.9, 27.3±3.2, 24.6±3.6, 

26.3±3.9 and 27.3±2.8 ms, p<0.05, figure 5). Given the high variation in the T2water measurements between subjects in the groups, we pooled all the muscles and found a positive 

correction between the fitted B1 and T2water (r = 0.43, p<0.0001). Additionally, we found a significant difference in T2water between the left and right orbit (87% and 75% respectively, 

p<0.0001). 

Discussion 

We show that qMRI of the EOM was able to detect subtle differences between MG patients, CPEO patients and controls. EOM volume and fat fraction was increased, most pronounced 

in chronic MG. No severe atrophy was observed as was expected in patients with residual ophthalmoplegia.7 We hypothesize that the unexpected increase in EOM volume in MG is 

due to compensatory hypertrophy, where the muscle volume increases to compensate for the muscle weakness. The atrophy and severe fat replacement in CPEO patients was expected 

based on the disease pathophysiology and is in line with literature3. The increase in T2water in the MR of the recently diagnosed MG group could be due to inflammation, as complement 

activation has previously been shown to occur in muscles in MG8  and these patient are  immunosuppressant naive. However, a high variation in T2water measurements between subjects 

was observed that could be obscuring differences. This may be caused by B1 influences that are not fully corrected in our EPG model, given the remaining relationship between T2water 

and B1. Moreover, we observed a B1 difference between the left and right orbit, which might be explained by regional B1 variation due to the field strength and challenging orbital 

anatomy. Improving the EPG model for this specific case is subject of future work. 

Conclusion 

We observed small increases in volume and FF in eye muscles of MG patients, most pronounced in chronic MG patients. This absence of gross structural changes implies that eye 

muscle weakness might be reversible, even in chronic patients with residual ophthalmoplegia. Additionally, we observed an increase in T2water in the MR in recently diagnosed MG 

patients.  

References 

1.  Verschuuren JJGM, Palace J, Erik Gilhus N. Clinical aspects of myasthenia explained. Autoimmunity. 2010;43(5-6):344-352. doi:10.3109/08916931003602130 

2.  Nair AG, Patil-Chhablani P, Venkatramani D V., Gandhi RA. Ocular myasthenia gravis: A review. Indian J Ophthalmol. 2014;62(10):985-991. doi:10.4103/0301-4738.145987 

3.  Pitceathly RDS, Morrow JM, Sinclair CDJ, et al. Extra-ocular muscle MRI in genetically-defined mitochondrial disease. Eur Radiol. 2016;26(1):130-137. doi:10.1007/s00330-
015-3801-5 

4.  Keene KR, van Vught L, van de Velde NM, et al. The feasibility of quantitative MRI of extra-ocular muscles in myasthenia gravis and Graves’ orbitopathy. NMR Biomed. 
2020. doi:10.1002/nbm.4407 

5.  Keene KR, Beenakker JWM, Hooijmans MT, et al. T2 relaxation time mapping in healthy and diseased skeletal muscle using extended phase graph algorithms. Magn Reson 
Med. April 2020:mrm.28290. doi:10.1002/mrm.28290 

6.  Marty B, Baudin PY, Reyngoudt H, et al. Simultaneous muscle water T2 and fat fraction mapping using transverse relaxometry with stimulated echo compensation. NMR 
Biomed. 2016;29(4):431-443. doi:10.1002/nbm.3459 

7.  Mantegazza R, Antozzi C. When myasthenia gravis is deemed refractory: Clinical signposts and treatment strategies. Ther Adv Neurol Disord. 2018;11. 
doi:10.1177/1756285617749134 

8.  Silvestri NJ, Wolfe GI. Myasthenia gravis. Semin Neurol. 2012;32(3):215-226. doi:10.1055/s-0032-1329200 

 

 

Extra-ocular muscle volume, T2water and fat fraction are slightly increased in patients with myasthenia 

gravis 

 

 

Vascular + MSK 

 

O-0032 
 

 

 



 

 

Figure 1: Dixon images depicting the eye muscles. A: Transverse water image on top and coronal 

water image below. Demonstration of volume changes in MG, CPEO and Graves’ orbitopathy. Notice 
the decrease in eye muscle volume in CPEO and swelling in the Graves’ orbitopathy patient. B: 

Example of extreme fat replacement of the eye muscles in CPEO, with the transverse water and fat 

image on the left and the coronal water and fat image on the right. C: Anatomical reference of all eye 

muscles. 

Figure 2: Muscle volume of the medial rectus eye muscle for all groups (healthy controls, recent 

MG, chronic MG, seronegative MG and CPEO). Increases in volume were observed for the 
chronic MG patients and a decrease in volume was observed for the CPEO patients (e.g. 

respectively for MR, 569±129, 603±106, 635±140, 520±85 and 442±114 mm3, p<0.01). 

 

Figure 3: Fat fraction of all the superior rectus eye muscle for all groups (healthy controls, 

recent MG, chronic MG, seronegative MG and CPEO). Fat fractions were different between 
groups: slightly elevated in chronic MG patients and severely elevated in CPEO patients (e.g. 

respectively for LR, 12±2%, 15±4%, 15±5%, 12±3% and 20±10%).  

 

Figure 5: T2water of the medial rectus eye muscle for all groups (healthy controls, recent 

MG, chronic MG, seronegative MG and CPEO). The T2water was significantly different 
between groups in the MR and post-hoc analysis shows the difference is caused by a higher 

T2water in the recently diagnosed MG patients (respectively 25.5, 27.31, 24.55, 26.3 ms and 

27.3±2.8, p < 0.05). 

 

Figure 4: Correlations between eye muscle volume and fat fraction. A positive correlation between eye muscle volume 

and fat fraction was present for the SR (r=0.41, p < 0.0001) and the IR (r=0.24, p < 0.05) in MG patients. On the contrary, 

a strong negative correlation between eye muscle volume and fat fraction was observed in the LR (r=-0.86, p < 0.005) 

and MR (r=-0.74, p < 0.05) in CPEO patients. 
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Synopsis: The influence of maximum wall shear stress (WSSMAX) and velocity pulsatility (vPI) are extensively investigated in aortic aneurysms, but 

hemodynamic variation along the Circle of Willis (CoW) in patients with an unruptured intracranial aneurysm (UIA) is unknown. Thirteen patients with an UIA 

were scanned at 7T-MRI using 4D phase-contrast MRI, comparing hemodynamic parameters between the parent artery of the UIA and the corresponding 

contralateral artery. The parent vessel of the UIA showed significantly higher WSSMAX, blood-flow and velocity, and lower vPI compared to the unaffected 

contralateral side. This study supports a hemodynamic role in the aetiology of aneurysm formation. 

Summary of main findings: Parent arteries of intracranial aneurysms show higher blood-flow, velocity and wall shear stress and lower velocity pulsatility, 

compared to the contralateral arteries. This suggests that hemodynamics play an etiologic role in aneurysm development. 

Introduction: An unruptured intracranial aneurysm (UIA) is a saccular dilatation of a brain vessel that is at risk of rupture. Aneurysm rupture results in an 

aneurysmal subarachnoid hemorrhage, a subtype of stroke with poor outcome1,2. The number of detected UIA is growing due to the increasing number and quality 

of brain scans. Timely treatment can prevent aneurysm rupture, but is mostly performed in UIAs with high rupture risk1. 

Prediction of aneurysm rupture is crucial in clinical decision making in patients with an UIA. Development and growth of an unruptured IA (UIA) is a 

multifactorial process with hemodynamic forces such as wall shear stress being an important contributor3. Arteries are under constant mechanical loading from the 

blood pressure and flow which causes endothelial shear stress and circumferential wall stress4. Novel imaging techniques as 7T-MRI 4D flow imaging enable 

accurate and reproducible measurement and quantification of blood flow and the resulting wall shear stress (WSS), blood-flow, mean velocity and velocity 

pulsatility index (vPI) in the intracranial vessels5. Since abnormal levels of WSS are implicated in the pathogenesis of aneurysmal disease6, relation between wall 

shear stress and presence of an UIA in a blood vessel may provide insight in the aetiology of UIA7. This study used accelerated 4D-flow imaging to compare the 

WSS, blood-flow, mean velocity and vPI in the intracranial parent artery containing an UIA with the corresponding contralateral artery without UIA. 

Methods: This study included subjects from the 3T-MRI ERASE (Early Recognition of persons at high risk of Aneurysmal Subarachnoid hemorrhagE) study, a 

screening study for UIA in family members of patients with an UIA. We included patients with a detected UIA that underwent additional 7-Tesla with a four-

dimensional phase-contrast-MRI (4D PC-MRI) acquisition. UIA locations were only included if there was a contralateral artery without an UIA and if the UIA was 

included in the 4D PC-MRI acquisition. Participants underwent 7-Tesla MRI (Philips Healthcare, Best, The Netherlands) using a volume transmit and 32-Channel 

receive coil (Nova Medical, Houston, United States). For this study, we used PROspective Undersampling in multiple Dimensions (PROUD) acceleration, which 

enables a pseudospiral ky/kz-plane acquisition scheme designed for incoherent undersampling with a variable sampling density8. The 4D PC-MRI acquisition 

covered the complete CoW with scan specifics as given in Table 1.  

The reconstructed 4D PC-MRI datasets were analysed using CAAS MR Solutions v5.1.1 software (Pie Medical Imaging, Maastricht, The Netherlands). CAAS 

automatically generates the centreline and perpendicular slices along the complete CoW from the ICA towards the smaller cerebral arteries. These perpendicular 

slices were visually checked and automatically propagated to create volumetric flow rate traces and separate velocity and area traces over the cardiac cycle.  

The blood-flow velocity pulsatility index (vPI=(Velocitymax-Velocitymin)/Velocitymean) was calculated from each velocity trace. The maximum WSS (WSSMAX) was 

calculated using an in-house-developed software in Matlab R2016a by multiplying the wall shear rate by the dynamic viscosity of blood (3.2x10 -3 Pa·s)9 (Figure 1). 

The outcome parameters WSSMAX, blood-flow, vPI and mean velocity over the cardiac cycle were calculated for all patients with UIAs (Figure 2) for two ROIs: 1. 

parent artery of the UIA, 2. the corresponding contralateral artery. An affected (ipsilateral) side versus unaffected (contralateral) side comparison was performed for 

each patient using paired t-test. The statistical significance threshold was set at p<0.05. 

Results: We included 14 patients (nine women, mean age 52 ± 12) with UIA (range 1.5 to 5 mm). One patient with a posterior inferior cerebral artery (PICA)) 

outside the field-of-view was excluded. Thirteen patients were included with the following UIA locations: six middle cerebral artery; three internal carotid artery 

(ICA); two posterior communicating artery  and two anterior cerebral artery). WSSMAX, blood-flow and mean velocity were statistically significantly higher, and the 

vPI was statistically significantly lower in the parent artery containing an UIA compared to the contralateral artery (Table 2). These results were consistent for all 

13 included patients with different UIA locations.  

Discussion: This study using 4D PC-MRI on ultra-high field (7T) showed different hemodynamics in the parent artery containing an UIA compared to the 

contralateral side without an UIA. The WSSMAX, blood-flow, mean velocity and vPI are thus potentially of risk for aneurysm development, growth and/or rupture. 

The limitation of this study is the limited number of UIAs. All UIA were in the anterior circulation, and therefore no conclusions can be drawn regarding the 

posterior circulation. However, we showed significant differences in these relatively small diameters of the UIAs, and all measurements were different within the 

same subject. Future studies need to include a larger population, preferably with long term follow-up, with also larger UIA in both anterior- as well as posterior 

circulation, to study the relation between WSS, blood-flow, velocity and vPI in the parent vessels and the presence of an aneurysm.  

Conclusion: 

This study shows that hemodynamic changes occur in parent arteries with UIA compared to the contralateral artery without UIA. All outcome measurements 

(WSSMAX, blood-flow and vPI) show statistically significant differences. These three hemodynamic markers in the parent arteries with UIA should be investigated 

further in larger population with UIA.  
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Figure 1. Delete this page if there are no figures or tables 

Table 1: Scan parameters 

 

Table 2: Outcome parameters for all included subjects calculated at the ipsilateral side (parent artery), where the aneurysm is located, and the unaffected contralateral side. 

 

Figure 1: Representation of the steps from 4D flow images to the analysis, whereby the red arrow points to the aneurysm location in this subject. A) 4D PC-MRI images are reconstructed 
and visualized over the cardiac phase with velocity scaled between 0 and 100 cm/s in this subject. B) The wall shear stress distribution along the Circle of Willis used for analysis 
regarding affected (ipsilateral) versus unaffected (contralateral) side.  

 

Figure 2: Representation of the 4D flow image analysis regarding affected (ipsilateral) versus unaffected (contralateral) side using CAAS software, whereby the red arrow points to the 

aneurysm location in this subject. A) MRA TOF image to show the aneurysm in this subject. B) Blood-flow analysis using the CAAS software for that same subject focused on the parent 

artery. C) Mean velocity curves (in cm/s) for this subject in the parent (blue) and contralateral artery (orange). D) Blood-flow (in ml/s) for this subject in the parent (blue) and contralateral 

artery (orange). 

 

 4D PC-MRI covering the Circle of Willis 

Field-of-view 250 x 190 x 20 mm3 
Acquired Resolution 0.7 x 0.7 x 0.7 mm3 
Velocity encoding sensitivity 100 cm/s (Left-Right) 
Flip angle 15° 
Repetition Time 6.4 ms 
Echo Time 2.0 ms 
Temporal resolution for a heart rate of 60 bpm 83 ms 
Scan duration for a heart rate of 60 bpm 3x 3:15 min:sec  

 

 

 
Ipsilateral side Contralateral side P-value 

Maximum Wall shear stress (Pa) 12.20 ± 2.18 8.62 ± 1.12 <0.001 

Blood-flow (ml/s) 1.41 ± 0.45 1.05 ± 0.40 0.007 

Velocity Pulsatility 0.68 ± 0.11 0.77 ± 0.09 0.002 

Mean velocity (cm/s) 39.42 ± 5.93 32.61 ± 4.87 <0.001 
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Synopsis: Multi-contrast Atherosclerosis Characterization (MATCH) was developed to quantify of carotid atherosclerotic plaque composition within 5 minutes’ scan 

time. Twenty symptomatic patients with ≥2 mm carotid plaque underwent 3.0 Tesla conventional multi-sequence and MATCH MRI. Excellent agreement was 

obtained for scoring a Lipid-rich necrotic core (LRNC) intraplaque hemorrhage (IPH) on the MATCH images while fair for calcifications. No significant differences 

between MATCH and multi-sequence MRI were found in volume of LRNC, IPH and calcifications. We demonstrated excellent agreement between MATCH and 

multi-sequence MRI for the identification and quantification of LRNC and IPH within significant shorter time.  

 

Background: Multi-sequence magnetic resonance imaging (MRI) is commonly used for quantification of carotid atherosclerotic plaque composition (1). Limitations 

are long scan time and image mis-registration errors. Multi-contrast Atherosclerosis Characterization (MATCH) was developed to overcome these limitations (2).  

Aim: To compare MATCH with multi-sequence MRI for the quantification of carotid plaque components.  

Methods: Twenty symptomatic patients with ≥2 mm carotid plaque underwent 3.0 Tesla multi-sequence and MATCH MRI. Image quality was scored on a 5-point 

scale based on vessel wall signal-to-noise ratio (SNR) and visibility of vessel wall and substructures (1, poor and 5, excellent) (3). The effective vessel wall SNR and 

contrast-to-noise ratio (CNR) between IPH and the muscle were calculated by dividing SNR and CNR by the acquisition time. Image analysis of the MATCH images 

was performed independently to that of the multi-sequence images (Figure 1). A Cohen’s kappa test was used to determine agreement in the detection of plaque 

components using multi-sequence versus MATCH MRI. Sensitivity and specificity of MATCH in identifying plaque components were calculated using multi-

sequence MRI as reference standard.  

Results: One total or nearly occluded artery was excluded. The mean quality scores of the MATCH images were lower than multi-sequence images (2.4±0.5 versus 

3.7±0.4; p<0.05), respectively. The overall effective SNR of MATCH was higher than multi-sequence protocol except for the hyper T1w images (Table 1). The mean 

effective CNR of intraplaque hemorrhage (IPH) on MATCH was significantly higher than that of magnetization prepared rapid acquisition gradient echo (MPRAGE) 

(7.2 ±4.3 versus 4.7±2.8; p=0.007). The scan time for MATCH and multi-sequence MRI was 7 and 39 minutes, respectively. Excellent intraobserver agreement was 

obtained for scoring a Lipid-rich necrotic core (LRNC)  (=0.89) and IPH (=0.91) on the MATCH images while fair intraobserver agreement was observed for 

calcifications (=0.32). The sensitivity and specificity of scoring LRNC and IPH were >83% and >96% while for calcifications the sensitivity and specificity were 

76% and 50%, respectively (Table 2). No significant differences between MATCH and multi-sequence MRI were found in volume of LRNC, IPH and calcifications. 

There was a small but significant difference in total volume of vessel wall and total volume of fibrous tissue (Figure 2). 

Conclusion: We demonstrated excellent agreement between MATCH and multi-sequence MRI for the identification and quantification of LRNC and IPH. There 

was only fair agreement for scoring presence of calcifications. Although MATCH images showed a lower mean image quality score, short scan time and perfect co-

registration are major advantages of MATCH. 
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Figure 1. An example of a patient with an atherosclerotic plaque in the left carotid artery. Four multi-sequence MRI weightings are manually co-registered and shown in the upper row, while the MATCH 

images are inherently registered and shown in the bottom row. IPH appears hyper-intense (white arrow) on hyper T1w MATCH and on magnetization prepared rapid acquisition gradient echo (MPRAGE) 
images. Contours are shown on T2w MATCH and MPRAGE as follows: green for outer vessel wall, red for lumen, yellow for lipid-rich necrotic core and blue for IPH. A good agreement is shown between 

the contours that are delineated on the MATCH versus the multi-sequence MR images, although slight deviations can be observed. 

 

 

Figure 2. An example of a patient with an atherosclerotic plaque in the left carotid artery. Four multi-sequence MRI weightings are manually co-registered and shown in the upper row, while the MATCH 

images are inherently registered and shown in the bottom row. IPH appears hyper-intense (white arrow) on hyper T1w MATCH and on magnetization prepared rapid acquisition gradient echo (MPRAGE) 

images. Contours are shown on T2w MATCH and MPRAGE as follows: green for outer vessel wall, red for lumen, yellow for lipid-rich necrotic core and blue for IPH. A good agreement is shown between 

the contours that are delineated on the MATCH versus the multi-sequence MR images, although slight deviations can be observed. 

 

Table 1. Comparison of the effective signal to noise ratio of the MATCH and multi-sequence images 

 

 

Table 2. Concordance between identification of intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), and calcifications (CA) on MATCH versus multi-sequence images. 

*4 carotids were excluded (contraindication of contrast injection) 
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Synopsis: Pennation angle is an important architecture parameter to understand muscle functioning. It is commonly measured using 2D ultrasound. 

However, it is difficult to infer 3D muscle architecture from 2D imaging. Therefore, we compare the pennation angle measurements obtained with 3D-

DTI fiber-tractography and 3D-ultrasound (3D-US). We acquired data of the Vastus Lateralis muscle in 9 healthy subjects. The mean pennation angle 

with 3D-US was 18.9°± 5.9°, whereas we found 33.3°±6.7° (straight fiber approximation) and 34.5°±4.8°(curved fiber fit) for DTI fiber-tractography. 

These differences between 3D-US and DTI could be of technical or physiological origin. 

Background(133 words):  

Knowledge on skeletal muscle architectural parameters, such as pennation angle, allow for a better understanding of how muscle architecture and function are related in 

health and disease. The most commonly used definition of pennation angle is the angle between the muscle fascicle and aponeuroses, commonly assessed using 2D B-

mode ultrasound imaging1. However, it is challenging to align the imaging plane with the line of pull and it is generally difficult to correctly infer 3D architecture from 2D 

imaging. Alternatively, both Diffusion-Tensor-Imaging (DTI) and 3D-ultrasound (3D-US) facilitate a 3D assessment of muscle fiber orientations and pennation angles2,3. 

However, so far little is known about how these two modalities compare. The purpose of this study was therefore to compare the quantification of pennation angles of the 

Vastus Lateralis muscle using DTI fiber-tractography and 3D-US.  

Methods(317 words):  

MRI of the upper legs was performed in supine position with the legs stretched in nine healthy participants (age range: 22-64 years; 5 males) at 3T (Philips ingenia) using a 

16-channel anterior coil and the 10-channel table posterior coil. MRI consisted of a 3-point Dixon scan as anatomical reference (FFE;  TR/TE1/ΔTE=8/1.33/1.1ms, 

FOV=480x276 x186mm3, voxel-size=1.5x1.5x3.0mm3, 4 echoes) and a DTI scan (SE-EPI;  48 gradient directions, b-value=0 & 400s/mm2, FOV=480x276x186mm3, voxel-

size=3.0x3.0x6.0mm3, TR/TE=4630/53ms, fat-suppression: SPAIR and SSGR4, NSA: 3) for the pennation-angle assessment (Figure 1). On the same day 3D-US 

acquisitions of the Vastus Lateralis muscle were obtained in the same position as for the MRI with a 5 cm 12.5MHz linear-array probe (imaging depth: 8 cm, acoustic 

frequency: 30Hz). 

Data-analysis:  

For both modalities the pennation angle was defined as the angle between the aponeurosis and the muscle fascicles passing by the central point at two third point within the 

muscle belly in the mid-longitudinal plane (Figure 2). More details on 3D-US pennation angle measurements were previously described5. DTI data were acquired in 3 stacks, 

joined and post-processed using QMRITools for Mathematica6. The post-processing consisted of denoising, registration and tensor calculation. DTI fibertracts were obtained 

from the fitted tensor starting in a 3 by 3 pixel Region-Of-Interest (ROI) located in the center of the muscle (settings: max angle=15°, step-size=1.5mm, FA range=[0.1-0.6] 

[7]) (Figure 3). Fibertracts were fitted to 1st- (linear) and 2nd-order polynomial lines. The deep aponeurosis of the Vastus Lateralis was manually segmented using ITK-

snap8, fitted to a polynomial surface after which the surface normals and tangents were calculated. The pennation angle was defined as the angle between the fitted 

aponeurosis surface and the fitted fibertracts at the intersection point between aponeurosis and fibers (Figure 4). For the comparison of the pennation angles between the 

two modalities, Bland-Altman analysis,  paired t-test and the intra-class correlation coefficient (ICC) (two-way random effect, consistency agreement, multiple 

measurements) were used9. 

Results(111 words):  

A total of nine datasets were successfully acquired and measurements of the pennation angles were calculated from both imaging modalities. The average pennation angle 

measured with 3D-US was 18.9°± 5.9°, whereas the pennation angles measured with the DTI fiber-tractography based approach were systematically and substantially 

higher, 33.3°±6.7° for the straight line fit, and 34.5°±4.8° for the 2nd order polynomial fit. The Bland-Altman analysis between 3D-US and DTI resulted in bias:-14.4° ±7.1°, 

LoA=[-28.4°  0.4°], p=0.0001 , ICC=0.5, 95% confidence interval= [0.5°  0.9°] for the straight line fiber fit and bias:-15.5°±6.9°, LoA=[-29.0° -2.0°], p= 0.0003, ICC= 0.3, 95% 

confidence interval = [0.3°  0.8°] for the 2nd order polynomial fit (Figures 4 and 5).  

Discussion(240 words): 

The pennation angles which were obtained with DTI fiber-tractography were larger than the ones which were obtained with 3D-US. Previous studies show values in the 

range between 6° and 28°10, 11. Although both techniques separately resulted in consistent pennation angle values, the reason for this discrepancy between techniques 

needs further investigation. There are a couple of reasons, both of technical and methodological nature, that could have contributed to the difference. First of all, 3D-US 

involves in-painting of a 3D volume by sweeping a linear ultrasound probe across the muscle and 3D position tracking with an external device, which involves several 

registration steps. Similarly, the DTI dataset needs registration to the anatomical DIXON data to compensate for field-inhomogeneity induced distortions of the EPI-based 

diffusion-weighted acquisitions. We will further investigate to which extent 3D-US and DTI Vastus Lateralis volumes match and/or whether post-processing in one of the two 

imaging modalities has introduced a systematic bias. Moreover, in 3D-US the analysis was done in 2D by selecting a plane in the 3D volume. Secondly, due to space 

limitations in the MRI, DTI and 3D-US measurements were performed in supine position with the leg stretched. The sarcomeres of the resting Vastus Lateralis, however, 

would be at near optimal length at 60° of knee flexion12.The lower knee angle could have resulted in wavy and curved relaxed fibers, which is probably somewhat more 

difficult to quantify using 3D-US as opposed to 3D DTI. 

Conclusions(40 words):  

We have compared two advanced 3D imaging modalities for the assessment of pennation angle. Future research will be aimed at further investigating the nature of the 

differences and to assess the reliability and the applicability of the pennation angle quantification. 
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Figure 2: 3D-US image of the Vastus Lateralis muscle. (Top) Sagittal plane. The dots show: 

the muscle insertion points (blue with numbers 1 and 2); the intersection points between the 

fascicle and the superficial and deep aponeurosis (orange); the center of the muscle and its 
projections on the aponeurosis (green). (Bottom left) Zoomed image on the sagittal plane at 

2/3 of muscle length, indicating the pennation angle (θ) between the fascicle and the deep 

aponeurosis. (Right) Axial plane. The center of the muscle and its projection on the deep 

aponeurosis are shown with yellow and blue asterisks. 

Figure 1: MRI of a representative subject. (Left) Water Images from the Vastus Lateralis Deep 

Aponeurosis. (Middle) Segmentation of the Vastus Lateralis Muscle (red volume). (Right) 

Representative diffusion-weighted image of the same slice. 

Figure 5: (Left) Box plot of the pennation angle measurements obtained with 3D-US, MRI fibertracts fitting to a 1st order polynomial and DTI fibertracts fitting to a 2nd order 

polynomial. (Middle) Direct comparison of 3D-US and 1st order method per subject. (Right) Direct comparison of 3D-US and 2nd order method per subject. 

 

Figure 3: Fractional anisotropy (FA) maps overlayed on Dixon water images of a representative subject 

of an MRI dataset with tracked fibers. (Left) Axial view with at the top: the ROI in the centre of the 

Vastus Lateralis muscle, at the bottom: fibertracts (in red) in the selected ROI. (Right) Coronal view 

with fibertracts (in red) at 2/3 of the muscle length. 

Figure 4: (Top) Visual representation of the pennation angle (blue) measured 

with DTI fibertractography at the intersection point between fibers and 
aponeurosis surface. The green surface represents a polynomial 3D-surface 

fitting of the Vastus Lateralis deep aponeurosis. The orange  lines are(Left) the 

1st order and (Right) 2nd order fitted  fibertracts (blue points). The red arrow 
indicated surface normal. (Bottom) Bland-Altman plot of the pennation angle 

measurements comparison between 3D-US and (Bottom left) 1st order and 

(Bottom right) 2nd order fitted DTI fibertracts. 
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Synopsis: ASL-MRI is recognized as an option to assess potentially heterogeneous physiological processes important for tumour treatment. Therefore, we explored 

the heterogeneity in normalised CBF as an imaging biomarker for assessment of treatment effect in paediatric low-grade glioma (pLGG). There is a noticeable effect 

of chemotherapy observed as a change in texture in comparison to healthy appearing brain tissue. A high difference in texture between treated and untreated patients 

for non-enhancing tumour part is observed, suggesting that texture, based on co-occurrence matrices, might be suitable as an imaging biomarker for assessment of 

treatment effect in pLGG. 

Summary of Main Findings: Heterogeneity in ASL-MRI is evaluated as an imaging biomarker for assessment of treatment effect in pLGG. Regardless of changes 

observed in remaining brain tissue, texture features are reflecting the change in tumour heterogeneity. 

Introduction: Paediatric low-grade gliomas (pLGG) account for 30-50% of all paediatric brain tumours1. The presentation of pLGG varies between symptomless, 

motor impairment, visual impairment, endocrine deficiencies, and hypothalamic failure. Consequently, primary treatment for pLGG consist of surgical resection 

and/or chemotherapy depending on these clinical symptoms and tumour location. Progression of residual disease can require multiple phases of chemotherapy over 

the years2. Despite 10-year overall survival of 85-96%, management of pLGG remains challenging3 and is considered a chronic disorder in over 50% of the cases4. 

Due to the underlying condition and/or treatment, the patients often suffer from functional, visual, and neurological impairment5. Arterial spin labelling (ASL) 

perfusion MRI assesses cerebral perfusion and is reported as an option to quantify underlying potentially heterogeneous physiological processes important in 

therapeutic decision making6. This study explores the heterogeneity in ASL-MRI as an imaging biomarker for assessment of treatment effect in pLGG. 

Methods: 17 Paediatric patients with confirmed pLGG (at the following brain locations: 5 posterior fossa, 1 lateral ventricles, 8 chiasmatic, 1 suprasellar, 1 spinal 

cord, 1 temporal hemisphere) referred to the Princess Máxima Centre for Paediatric Oncology were included in this study: 5 untreated patients (2f/3m, 

age=9.4±5.0year) and 12 patients (6f/6m, age=7.3±3.4year) treated by chemotherapy. For untreated patients, MRI was acquired at baseline and for treated patients at 

follow-up. MRI was acquired at 1.5T or 3T Philips MRI system using a 32-channel receive head coil. Imaging protocol included a T1-weighted (T1w), T1w after 

gadolinium injection (T1w-c), T2-weighted (T2w), FLAIR, and pseudo-continuous ASL (PCASL). The PCASL-MRI was acquired as a 2D EPI sequence with 

background suppression, label duration of 1800 ms, and an initial post-label delay of 1800ms or 1525ms at 1.5T or 3T respectively.  

Three-step processing framework of the structural PCASL images is illustrated by flow chart in Figure 2. Pre-processing of structural MRI involved registration to 

T1w images, skull-stripping by SPM127, and segmentation of brain structural data of normal-appearing grey matter (NAGM) and normal-appearing white matter 

(NAWM). Subsequently, co-registered skull-stripped structural MR images were used to segment tumour by utilising HD-GLIO8,9 that resulted in individual tumour 

components: contrast enhancing (CE) and non-contrast enhancing (NCE), cyst, and necrosis.  

The quality of image registration and automatic tumour segmentation was assessed in a group of ten patients randomly selected from our LGG cohort. Registration 

was evaluated quantitatively using manual annotations of anatomical landmarks (e.g., AC and PC) and is assessed as the root mean square error (RMSE) between 

individual observers. Automatic tumour segmentation was compared with a manual delineation by a radiologist and quantified by DICE coefficient9. PCASL-MRI 

was processed by ExploreASL10 into quantitative CBF and normalised by average CBF in the HAGM, producing normalised CBF (nCBF). Treatment effect was 

assessed by three first order statistical (FOS) features (mean, median, standard deviation) and 22 co-occurrence texture features11-13 with a matrix size of 26 averaged 

over four directions. The resulting features were averaged over all slices containing the tumour and were presented separately for CE, NCE, and NAWM. A total of 

25 features per ROI was ranked independently using a feature selection algorithm maximising the area between the empirical ROC curve and the classifier slope. The 

Wilcoxon signed-rank test was used to assess the differences between the treated and untreated patients. 

Results: The checkerboard view in Figure 2A illustrates an example of registration results at the ventricles level and at the tumour level. The averaged RMSE for the 

two anatomical landmarks is similar for all three sequences (Figure 2B). All tumour masks produced by HD-GLIO were manually post-processed. For two tumours, 

HD-GLIO produced a false negative segmentation for both CE and NCE tumour masks. The remaining eight tumours had an average DICE score of 0.76 for the CE 

tumour mask and 0.34 for the NCE tumour masks. Figure 3 illustrates the final masks (CE, NCE, NAGM, and NAWM) and nCBF-map. Considering differentiation 

between treated and untreated patients, none of the FOS features demonstrate significance while a number of textual features were found significant. The most potent 

texture feature (i.e. cluster shade) assessing the differences between treated and untreated patients showed an average change of 109% for NCE tumour mask and 18 

% change in NAWM. 

Discussion & Conclusions: Quantitative validation of the registration gives a lower RMSE than the size of the AC and the PC suggesting a good registration accuracy 

in these paediatric patients. There is a noticeable effect of chemotherapy observed as a change in texture of NAWM. This is in line with previous studies showing 

that chemotherapy is associated with damage of normal-tissue in the brain14.  The significantly higher difference in texture between treated and untreated patients for 

NCE suggests that texture analysis, based on co-occurrence matrices, are suitable to quantify the change in heterogeneity and therefore could potentially serve as an 

imaging biomarker for assessment of treatment effect in pLGG. These conclusions are also supported by previous findings in paediatric patients after radiotherapy15. 
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Figure 2. Final registration results illustrated by: 

A: checkerboard view at tumour level (upper panel) and at ventricle level (lower panel) between T1w and following moving images: FLAIR (left column), T1c (middle column), and T2w (right column). 

B: average RMSE for two anatomical landmarks  

 

 

Figure 3. T1w-MRI overlaid with tumour masks (A), GM and WM mask (B), and nCBF-map (C) 

A: different tumour masks: CE-red, NCE-green, cyst-blue, necrotic-yellow 

B: two brain masks in the supratentorial brain region: NAGM -red, and NAWM-blue  

 

Table 1. Groupe-wise feature ranges for treated and untreated patients. *indicate a significant difference. CE, contrast enhancing tumour; NCE non-contrast enhancing tumour; HAWM, healthy-appearing 

white matter.  

 

 

Figure 4. Boxplots illustrating the nCBF-map results as quantified by FOS feature mean in panel A, and by texture feature cluster shade in panel B.  noT, untreated patients; T, treated patients 

 

Figure 1. Flow chart illustrating the three-step processing algorithm 

consisting of pre-processing (image registration, scull-stripping, and 
segmentation of structural MRI), processing of PCASL MRI (tumour 

segmentation and generation of qCBF-map), and texture analysis 

(normalisation of qCBF and heterogeneity assessment).  
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Synopsis: Measuring cerebrovascular reactivity (CVR) under narcosis is underreported, while narcosis is often necessary for pediatric or cognitively impaired patients. When acetazolamide is used in 

awake patients, maximum CBF increase reaches a plateau after ~12min. Using ASL- and BOLD-MRI with acetazolamide we showed that for pediatric moyamoya patients the response is different. Patients 

under narcosis show lower CVR and reach peak CBF earlier (after around 6 minutes), after which CBF decreases again without the plateau-phase. This shows the response to acetazolamide is distinctively 

different between awake and narcosis patients and caution is warranted during interpretation of narcosis CVR images. 

 

INTRODUCTION 

Cerebrovascular reactivity (CVR) measurements are increasingly used for a range of diseases and indications1–3, using gold-standard [15O]H2O-PET, or MRI based measurements (Blood Oxygen Level 
Dependent (BOLD) and Arterial Spin Labeling (ASL))4–6. Acetazolamide-injection is a commonly used vascular-stimulus7,8. For moyamoya vasculopathy (MMV), cerebral blood flow (CBF) and CVR 

measurements are essential for the indication and evaluation of revascularization4,9. However, MMV patients are often young or cognitively impaired, thus necessitating narcosis to prevent severe motion 

related artifacts10,11.  

Little has been reported on CVR in MMV under narcosis, but typically acetazolamide is used in a similar manner as in awake patients under the assumption that anesthesia does not affect the mechanisms of 
CVR. To test this assumption, we compared the response to acetazolamide between MMV patients under narcosis and awake, using a dynamic BOLD-series combined with multi-delay ASL (MD-ASL) 

before and ~15 minutes after injection of acetazolamide.  

METHODS 

We included all pediatric MMV patients without motion artefacts from our clinical MRI-CVR database. All patients provided written informed-consent. Narcosis was either propofol or sevoflurane, at the 

discretion of the anesthesiologist, using a laryngeal mask without muscle relaxants. Scans were performed at 3T (Philips) using a 32-channel receive coil (Nova Medical).  

Baseline CBF measurements parameters: 5 post-labeling-delays (1206-3480ms), pCASL, multi-slice EPI, label duration=2s, voxel-size=3.75x3.75x7mm3, 16 slices, FOV=240x240x120mm3, 
TR/TE=6s/11ms, flip angle=25°, SENSE factor=2, background suppression, 24 volumes, scan-time=5min. Multi-slice gradient-echo BOLD EPI parameters: multi-band (TR=1.1s) or non-multiband 

(TR=2.8s), voxel-size=2.5mm isotropic, 48 slices, FOV=224x224x120mm3, TR/TE=1.1s/35ms, flip angle=65°, SENSE factor=1.7. Acetazolamide injection (20mg/kg (max 1g)) began between 60-90 seconds 

after the start of the BOLD-scan. Upon completion of the BOLD-scan, a second MD-ASL scan was acquired and used for the calculation of the ASL-CVR. CBF was computed using BASIL (FSL, FMBRIB, 

Oxford, UK).  

BOLD data were motion-corrected (MCFLIRT, FSL), distortion-corrected (TOPUP, FSL), spatially smoothed (3D Gaussian kernel, FWHM=5mm) and normalized (to %BOLD). Considering the variable 

TRs used, all BOLD data were interpolated to TR=1s. Further timeseries analysis was performed using functions from the seeVR-toolbox (seeVR, Utrecht, NL)13. Cerebellar masks were applied to generate 

BOLD-CVR ROI time-series, which were temporally smoothed (LOESS filter, 6% window) and averaged for both groups. The mean and 95%CI (1.96*SEM) was plotted. Time-to-peak (TTP), the CVR-

slope of the initial linear response and the final CVR amplitude were calculated for each subject and compared using Student’s t-test (Matlab, Natick, USA). 

The patients’ MMV-pathology will have heterogeneous spatial effects in the cerebrum. To focus primarily on the effects of the anesthesia on CVR we focused in this study on the cerebellum as this is 

independently perfused by the vertebrobasilar system; unaffected by MMV12.  

RESULTS 

We identified 44 datasets, from 37 unique patients (23 children) and we could include eight (median age 11.8y) narcosis scans and ten (13.4y) awake scans (Table 1). 

The %BOLD-change in the (unaffected) cerebellum differed significantly between narcosis and awake patients ~120s after starting the acetazolamide injection (Fig 1). The mean TTP were ~413±159s 

(mean/SD) and ~630±110s in narcosis and awake patients, respectively (p=0.0035, Fig 1B). The final BOLD-CVR amplitude was 0.64±0.70%BOLD for narcosis and 3.8±1.2%BOLD for awake patients 

(p<0.0001). The CVR-slope was 0.0070±0.0060%/s and 0.016±0.0051%/s for the narcosis and awake patients, respectively (p=0.0035, Fig 1A).  

The ASL-CBF values in the cerebellum were comparable between narcosis and awake at baseline (31.5±16.3 resp. 38.4±10.3 ml/100g/min, p=0.3) but after acetazolamide-injection the CBF of awake patients 

was higher than narcosis patients (67.0±13.6 vs. 47.4±17.5, p=0.02). CBF was higher in awake patients, but not significantly different (27.5±12.4 vs. 16.1±11.5 ml/100g/min, p=0.07, Fig. 2). 

DISCUSSION 

We showed a significant difference in BOLD-response in terms of the TTP, CVR-slope and amplitude parameters to acetazolamide between narcosis and awake MMV patients in the unaffected cerebellum. 

This was supported by ASL results, albeit less strong. This is an important finding since the effect of the anesthesia may lead to an underestimation of true CVR.  

The mechanisms driving the observed differences is not directly clear and warrants further research. The anesthetic agents may pre-dilate vessels leading to a higher venous oxygen saturation and lower 

possible BOLD signal increase with acetazolamide14. However, we did not see a difference in baseline CBF-values between awake and narcosis patients. Combining ACZ with anesthesia might lead to an 

physiological interaction, causing more hyperventilation and deeper breathing (i.e. respiratory compensation for pH-decrease) leading to inhibition of the CBF-increase. The lower BOLD response under 
narcosis could also be due to anesthesia-related reductions in CMRO2

14. Here, baseline venous saturation would increase leading to less ‘headroom’ to evoke BOLD-contrast changes during acetazolamide-

mediated increases in CBF. If true, this would mean BOLD-CVR may be underestimated under narcosis. However, the apparent reduction in the BOLD response at later time-points (after the TTP) suggest 

that even the post-ACZ ASL -and even [15O]H2O-PET- may be underestimating CVR under narcosis.  

CONCLUSION 

The use of narcosis has an substantial effect on the CVR response of patients under narcosis, leading to a lower CVR slope, a shorter TTP and lower final CVR amplitude. More research is needed for the 

implications of this finding, and to find the best way to measure CVR under narcosis. Until then, narcosis CVR scans using acetazolamide need to be interpreted with caution.  
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Table 1, Characteristics of included patients 

    narcosis (n = 8) awake (n = 10) 

age (median, range) 11.8 (5.0-16.4) 13.4 (6.8-17.2) 

female (n, %)  6 (75%) 6 (60%) 

MMV type MMD 3 (38%) 8 (80%) 

 MMS 5 (63%) 2 (20%) 

 bilateral 6 (75%) 6 (60%) 

 unilateral 2 (25%) 4 (40%) 

treatment pre-operative 3 (38%) 7 (70%) 

 unilateral operated 1 (13%) 1 (10%) 

  bilaterally operated 4 (50%) 2 (20%) 

Abbreviations: MMV = moyamoya vasculopathy, MMD = moyamoya disease (idiopathic), MMS = moyamoya syndrome.   

 

 

 

FIGURE 1 Mean timeseries of the BOLD-response of the – unaffected – cerebellum compared between narcosis and awake patients, showing %BOLD-change (A) and normalized (B). The curves show the 
mean of the raw data per group with the 95% confidence interval. Three metrics are compared; the maximum slope - group average for both group is shown by dotted lines -, final CVR amplitude (vertical 

boxplots, 1A), and the Time To Peak (TTP, horizontal boxplots, 1B). **: p<0.005, ***:p<0.0005 

 

 

FIGURE 2 Comparison of quantified cerebral blood flow (CBF) of the cerebellum between narcosis and awake patients, measured by multidelay arterial spin labeling, before and after acetazolamide (ACZ) 

injection and the difference between before and after.  
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Synopsis: Large scale efforts are being employed to link Major Depressive Disorder (MDD) to cortical alterations in gray and white matter, though often, limited 

resolution prevents conclusions regarding the source. Here we used quantitative 7T MRI to explore the myeloarchitecture of the cortex in people suffering from MDD 

in order to unravel potential mechanisms underlying the psychopathology of MDD. We find altered T1-profiles in the rostral ACC, lateral PFC and OFC in MDD 

compared to healthy controls, indicating changes in cortical myeloarchitecture. Overall, cortical T1 values were higher in MDD, suggesting lower cortical myelination. 

Summary of main findings: Using ultrahigh field MRI we showed that the cortical T1-profiles of people suffering from MDD differed from those of healthy controls. 

Consistently higher T1-values were found in ACC, PFC and OFC, suggesting altered cortical myeloarchitecture. 

Introduction: Major depressive disorder (MDD) is one of the most prevalent and debilitating psychiatric disorders, affecting hundreds of millions of people 

worldwide. Earlier magnetic resonance imaging studies have associated MDD with thinner cortex in the (para)limbic circuitry, including orbitofrontal cortex (OFC), 

medial prefrontal cortex (mPFC) and rostral anterior cingulate cortex (rACC)1. Quantitative imaging can potentially resolve the myelin distribution over the cortical 

layers and possible demyelination beyond what can be covered by volumetric analysis alone. Here, we specifically aimed to study the myeloarchitecture of the 

cerebral cortex using ultrahigh field MRI (7T) and quantitative multiparametric mapping (T1 and T2*). T1-variations in gray matter are for a large part explained by 

myelin concentration2,3,4,5, while T2*-values are associated with iron content, brain tissue damage, and (resting state) neuronal activity6. Distribution of relaxation 

time values across the layers of the cortex could provide insights in the way structural integrity is affected by MDD. 

Methods: Images of 73 individuals (14 healthy controls; 59 patients diagnosed with MDD) were acquired using a Philips Achieva 7T MRI scanner with a 32-channel 

head array coil. We used a submillimeter MP2RAGEME (multi-echo magnetization-prepared rapid gradient echo)7 sequence with the following parameters: TE1= 3 

ms, TE2,1–4 = 3, 11.5, 19, 28.5 ms, flip angles = 4°/4°, TRGRE1,2 = [6.2 ms, 31 ms], FOV = 205×205×164 mm; nominal voxelsize = 0.7 mm isotropic. Fat-navigator 

based motion correction was used to improve edge definition8. T1-maps were computed using a look-up table9 and T2*-maps were computed by least-squares fitting 

of the exponential signal decay over the multi-echo images of the second inversion. The T1-weighted anatomical image was processed following a pipeline designed 

to optimize laminar accuracy. Delineation of cortical areas was based on the Desikan-Killiany atlas, following the MDD-ENIGMA consortium1. To limit the multiple 

comparisons problem, we selected three ROIs that showed the highest effect sizes in the ENIGMA-study1 (rACC, mOFC, and lPFC), which were sampled to the 

subjects’ volumetric space and applied to the T1-/T2*-data that was sampled to 10 cortical depths using Nighres’ profile sampling module, resulting in 10 values for 

each region for each subject. Statistical testing consisted of t-tests implemented in JASP to elucidate effects across groups. 

Results: Average T1/T2*-maps sampled to the surface are shown in Figure 1A, showing the classical pattern of reduced T1/T2*-values in the sensorimotor cortex4,6. 

Figure 1B highlights the endeavors taken to improve segmentation as much as possible. Note that basing results solely on a FreeSurfer segmentation comes at the 

risk of underestimating T1-profiles towards to pial surface (red arrow). Given that the atlas labels of the ROIs are based on FreeSurfer’s segmentation, we dilated the 

ROIs and multiplied them with our optimized segmentation to maximally sample the cortex. Obtained T1/T2*-values are in line with the literature and are consistent 

across hemispheres (any effects did not survive Bonferroni correction). Figure 2 shows the profiles of T1-/T2*-values across cortical depth in people suffering from 

MDD compared to healthy controls (line plots), as well as the area under the curve (AUC; distribution plots), obtained by fitting a 2nd-order polynomial to the 

profiles. For all ROIs, the T1-profiles of the MDD-group lie above those of the HC-group, especially at ~50% cortical depth, indicative of altered T1-distributions in 

this group. No statistical effects were found for T2*-parameters and these were therefore excluded from the additional parameter fit analysis. The polynomial fit 

analysis in T1-profiles revealed differences across groups: the A-parameter of the MDD group was greater than the healthy control group in the medial OFC (t60 = -

2.485, p =.016) and lateral PFC (t60 = -2.909, p = 0.005). The B-parameter of the MDD group was decreased in the rostral ACC (t60 = 2.493, p = .015) and medial 

OFC (t60 = 3.018, p = .004). Only the A-parameter effect in the lateral PFC and the B-parameter effect in the medial OFC survived the Bonferroni correction for 

multiple comparisons with a threshold of p<0.007. 

Discussion: Here, we used high resolution, motion corrected, quantitative MRI at 7T to probe detailed properties of the cortex in regions crucially implicated in 

MDD, e.g., the rostral ACC, medial PFC, and lateral PFC. We find alterations in characteristics of T1-, but not T2*-profiles, in patients with MDD, with reduced T1-

values across the cortical ribbon, suggestive of decreased myelin content. Though UHF-MRI is desired to get the required resolution to resolve fine details, it comes 

with increased difficulties in segmenting delicate areas such as the prefrontal regions due to more disruptive B1-/B0-inhomogeneities. Parameters obtained from 

polynomial fits can be informative for the general shape of cortical profiles, but their functional implications are yet to be determined and should be complemented 

by other measures of shape such as the non-linearity index reflecting the amount of deviation from a linear regression fit3. Lastly, these results should be interpreted 

with caution due to the limited size of the healthy control group, but underscore the promise of quantitative 7T MRI for psychiatric applications. To overcome some 

of the effects this might have, future research will focus on analyses within the MDD group, to relate these parameters to disease severity and other metrics. 

Conclusion: We show here the feasibility of quantitative MRI with a psychiatric application. T1-values across the cortical ribbon were altered in MDD compared to 

healthy controls, possibly benefiting insights in functional characterization of aberrant circuitry that underpin psychopathology. 
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Figure 1. (A) Average T1-/T2*-maps projected onto FSAverage. (B) Example segmentations and challenging areas (e.g., ACC) indicated with a red arrow. (C) Average T1-/T2*-values across hemispheres 
for each ROI. Any effects did not survive correction for multiple comparisons. (D) Comparison of T1-/T2*-values across selected ROIs. *p < 0.05, **p < 0.01, survived Bonferroni correction. Abbreviations: 

ACC = Anterior Cingulate Cortex, PFC = prefrontal cortex, OFC = orbitofrontal cortex, ROI(s) = regions of interest. 

 

Figure 2. T1- and T2*-values across cortical depth in patients with MDD (blue) and healthy controls (grey). Dot plots represent the area-under-curve (AUC) derived from fitting a 2nd-order polynomial to 

the profiles. 

 

Figure 3. Characterization of profiles with parameters from the polynomial fit for each ROI. The distribution in MDD and HC is depicted in the form of dots and density. *p < 0.05, **p < 0.01, survived 

Bonferroni correction. 
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Synopsis: Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT) reconstructs multiple quantitative MR parameters from a single fast scan. This 

quantitative information can be leveraged for several purposes, including the synthetization of clinically desired image contrasts. Preliminary results of the first 

clinical trial using MR-STAT in patients with neurological diseases show that the synthetically generated contrast images (i.e., T1w, T2w, PDw and FLAIR) were 

acceptable for diagnostic use (5-point Likert scale ≥ 3), although the score was lower compared to conventional contrasts. This highlights the potential of MR-STAT 

to provide synthetic contrasts on top of quantitative maps, while reducing scan time. 

Introduction: A standard clinical MRI neuro-examination consists of several sequences with different image contrast weightings (e.g., T1w, T2w, proton density 

[PD], fluid-attenuated inversion recovery [FLAIR]), totaling an acquisition time between 15 – 20 minutes. Using the Magnetic Resonance Spin TomogrAphy in 

Time-domain (MR-STAT) technique, the quantitative value of T1, T2 and proton density can be extracted with one 5-minute multi-parametric whole-brain sequence 

(1, 2). MR-STAT consists of a transient-state Cartesian acquisition scheme and model-based non-linear inversion reconstruction. The reconstructed quantitative 

values can be used in diagnosis, evaluation of disease progression and treatment (3, 4). Additionally, any desired image contrast can be synthesized according to a 

physical signal model. The aim of this prospective cross-sectional study was to assess the diagnostic image quality of MR-STAT-generated synthetic image data sets 

in healthy participants and patients with neurological diseases compared to conventional images (5). 

Methods: In total 50 participants (22 females) with a median age of 45 years (range: 21 – 79 years) were included: 10 healthy volunteers without a history of 

neurological disease and 40 patients with one of four common neurological diseases – brain tumor, epilepsy, multiple sclerosis (MS) or ischemic stroke – equally 

divided among these disease groups. MRI exams were performed at the University Medical Center Utrecht on a 3T MR system (Ingenia, Philips, Best, the 

Netherlands); all subjects underwent one MR-STAT sequence and four clinically used T1w, T2w, PD and FLAIR MRI sequences. The 5-minute-long MR-STAT 

sequence was a Cartesian encoded, spoiled Gradient Echo with a slowly varying flip angle preceded by a non-selective inversion pulse (2). The specific sequence 

parameters for MR-STAT, which was 54% faster, and conventional sequences are specified in Table 1. The reconstructed quantitative MR images were used to 

generate corresponding synthetic contrast images from standard signal models after denoising the parameter maps using deep learning (6). For these preliminary 

results, a total of 400 (4 synthetic MR-STAT and 4 conventional for each of the 50 participants) randomized images were assessed by at least two out of three blinded 

independent neuroradiologist (>6 years’ experience). Assessment sessions included 100 unique images and were separated by a memory-washout period of at least 

two weeks. Images were scored for overall quality on a 5-point Likert scale, morphologic legibility and presence/absence of artifacts. 

Results and Discussion: The overall image quality was acceptable for diagnostic use (Likert scale ≥ 3) for 99% of all contrasts synthesized from quantitative MR-

STAT as well as for conventional serial acquisition (Table 2). However, synthetic MR-STAT images scored lower than conventional for T1w, PDw and FLAIR 

contrasts (the exception being T2w) (Table 2). Images synthetically generated from quantitative MR-STAT maps and conventional acquisitions of healthy participants 

had comparable image contrasts, an example is shown in Figure 1. Additionally, similar image quality can be observed in synthetic MR-STAT and conventional 

images in the relevant slice of a patient with a (a) brain tumor, (b) stroke, (c) epilepsy and (d) MS (Figure 2). However, in some patients (see Figure 2) we noticed 

that lesions appear hypointense in synthetic MR-STAT FLAIR images, while they are hyperintense in conventional images. Inferior image quality of synthetic image 

contrasts were also previously observed (7-9), but could be enhanced as shown by Hagiwara et al. (10). 

Legibility of prior determined anatomic/morphologic features were similar for the synthetic and conventional images, except for the head of the caudate nucleus and 

the posterior limb of the internal capsule which were more legible in the synthetic MR-STAT T1w images (Table 3). The overall percentage of images with artifacts 

identified and characterized for conventional and synthetic MR-STAT images is shown in Table 3. In the conventional images, more motion artifacts were observed 

(Δ 18%) predominantly in the FLAIR contrast (Δ 50%). In contrast, more images with synthetic MR-STAT T1w contrast had white pixels/spike noise (Δ 62%), while 

overall more blurring (Δ 49%), susceptibility (Δ 21%) and flow effects were observed. Flow effects are intrinsic to the 2D gradient echo MR-STAT acquisition 

technique, while optimization of the synthetization process may reduce the blurring effects. A possible alternative to improve synthetized contrasts could be machine-

learning based methods (11). 

Conclusion: The synthetic MR-STAT images from a single fast scan were overall acceptable for diagnostic use, although the perceived image quality is lower and 

in some cases the contrast of lesions differ in FLAIR images. These results highlight the potential of MR-STAT to provide clinicians with clinically useful image 

contrasts within substantially reduced scan time, in addition to multi-parametric quantitative maps.  
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Figure 1. Comparison of T1w, T2w, PDw and FLAIR contrast 

images obtained from conventional (Conv) MR and 

synthetically generated from quantitative (q)T1 and (q)T2 

maps obtained with MR-STAT. Different axial slices 

uniformly distributed over the longitudinal direction of one 

representative healthy participant. Figure 2. Comparison of T1w, T2w, PDw and FLAIR 

contrast images obtained from conventional (Conv) 
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A comparison of tractography and fMRI pre-surgical planning approaches with intraoperative mapping-

based validation. 

 

 

Synopsis: Accurate presurgical brain mapping enables preoperative risk assessment and intraoperative guidance to minimize postoperative deficits. Here we compare mapping accuracy of task-based fMRI 

(tbfMRI), BOLD and Functionnectome resting state fMRI (rsfMRI), DTI and constrained spherical deconvolution (CSD)-based tractography in 21 preoperative neurosurgical patients using intraoperative 
electrical stimulation (DES) as the ground truth for functional mapping. Accuracy was estimated based on minimum distance between MRI-based mapping and positive DES coordinates. We report that CSD 

outperforms DTI, and rsfMRI performs similarly to tbfMRI using DES. This demonstrates the potential benefits of using CSD and rsfMRI in clinical practice. 

Introduction 

Presurgical brain mapping enables preoperative risk assessment and is used for intraoperative guidance to minimize postoperative deficits 1–3. Presurgical MRI mapping includes structural imaging, task-

based fMRI (tbfMRI) for functional mapping, and diffusion tensor imaging (DTI) 4–6 scans for white matter mapping with fiber assignment by continuous tracking (FACT) 7. TbfMRI requires adequate task-
performance, which limits its applicability only to patients who are able to perform the task of interest 8,9. DTI FACT is known to suffer from inaccuracies in the presence of complex fiber architecture 10. 

However, these techniques remain the mainstay of clinical presurgical MRI brain mapping despite the availability of alternatives such as resting state fMRI (rsfMRI) 11, and constrained spherical deconvolution 

(CSD) 12 based tractography, which address these limitations. 

Here we evaluated the accuracy of a) CSD to FACT based tractography and b) tbfMRI to resting-state fMRI (rsfMRI) in preoperative neurosurgical patients. Intraoperative electrical cortical and subcortical 

stimulation (DES) represented the ground truth. Accuracy was estimated based on minimum distance between MRI-based mapping and positive DES coordinates. 

Methods 

Multimodal presurgical MRI scanning (3T Philips) was performed on 21 surgically naïve patients who were prospectively recruited (14 tumors, and 7 epilepsy). All participating patients signed written 

informed consent and local ethics committee approval was acquired (S61759 - Leuven/Belgium). We acquired 3D high resolution structural images (1mm isotropic), tbfMRI (1.8x1.8x3.2 mm resolution, TR 

1.5s, multiband factor 2) and rsfMRI (2.2 mm isotropic resolution, TR 0.9s, multiband factor 6) and diffusion MRI (2 mm isotropic resolution) (5 b0, 128d b1200, +/- 128d b2500). 

Patients underwent wake-up neurosurgery and DES (OSIRIS neurostimulator). DES points were considered positive if stimulation interfered with task performance or evoked a motor/sensory response. 

Spheres of 5 mm radius were constructed around positive coordinates and warped to subject-specific T1w space using FSL 13,14 and  ANTs 15. 

TbfMRI data were processed using a general linear model in SPM12 16, DTI FACT tractograms of the corticospinal tract (CST) and arcuate fasciculus (AF) were manually generated using the Philips EWS 

clinical workstation, resulting tractograms were exported as voxel maps. Structural parcellation of the T1w images was done using VBG 17, FreeSurfer 18 and MSBP 19. RsfMRI data was processed using the 
first level seed-to-voxel analysis in CONN 20 and the MSBP parcellation maps. CSD tractography was done using FWT 21. Preprocessed rsfMRI BOLD images were also processed using the region-wise 

Functionnectome 22 pipeline and processed with the first level seed-to-voxel in CONN. 

Tb-fMRI maps were thresholded at puncorrected  < 0.05. All results were warped to the subject-specific T1w space using ANTs. Minimum distances were calculated between each DES point and the corresponding 

functional maps and/or tractograms voxel maps and used to represent mapping accuracy. A two-tailed paired t-test was used to compare DTI and CSD, and a one-way analysis of variance (ANOVA) with 

repeated measures was used to compare the fMRI results. Results were considered significant at p < 0.05. Figure 1 shows a schematic of data processing workflow. 

Results 

Table 1 shows summary statistics of the minimum distances and results of all tests. There was a significantly lower minimum distance between CSD fiber bundles and the DES coordinates compared to DTI 

bundles, indicating that CSD is more accurate than DTI FACT. There was a small difference in minimum distance between tbfMRI and rsfMRI that didn’t survive Bonferroni correction, and a significant 

difference between tbfMRI and Functionnetcome outputs. In both cases tbfMRI was found to be the most accurate. The differences found between DTI and CSD were the largest and most significant result. 

Demonstrative results for the SMN, and for the language network are shown in Figures 2 and 3. 

Discussion 

We found a lower minimum distance between CSD tractograms and DES spheres demonstrating the added benefit of using CSD for fiber tracking compared to the clinical implementation of DTI FACT. 

This finding cannot be attributed solely to the CSD model however, but also to the advanced diffusion preprocessing used 23–25. More accurate DTI results may be achievable with advanced preprocessing 

pipelines. In line with the literature 26–29, TbfMRI and BOLD rsfMRI showed only small and non-significant differences, confirming the reasonable accuracy of BOLD rsfMRI based localization of eloquent 
cortical regions. Additionally, rsfMRI can be used to investigate multiple RSNs simultaneously, making it more efficient than tbfMRI, which tends to be task-specific. This feature of rsfMRI may extend the 

scope of presurgical planning by additionally localising higher-order cognitive and emotional processing networks 30. Functionnectome analysis results were less encouraging, however, this may be attributed 

to the presence of focal pathologies in our data, which changes the structural connectivity profile of the involved brain regions and violates the method’s assumptions. However, it does show promise and this 

study is the first to apply the Functionnectome approach to clinical data. 

Conclusion 

In a neurosurgical setting, CSD outperforms DTI, and rsfMRI performs similarly to tbfMRI when using DES to localize functional brain regions. This demonstrates the potential benefits for using CSD and 

rsfMRI in clinical practice. 
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Figure 1: Schematic representation of the study outline and data processing steps. Cartoon glasses 

shown in the left lower corners indicate visual quality checks. Blue = clinical MRI workflow, Red = 

surgical intervention, Green = study analyses.  TbfMRI = task-based functional MRI. DTI FACT = 

diffusion tensor imaging fiber assignment by continuous tracking. GLM = general linear model, DES 

= direct electrical stimulation, CSD = constrained spherical deconvolution, rsfMRI = resting state 

functional MRI. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: (A and B) Sagittal T1-weighted images from a patient with a right frontal opercular high-

grade glioma. Lip motor fMRI maps from tbfMRI and BOLD rsfMRI (A), and voxel maps of the cortico-

spinal tract (CST) using DTI FACT and CSD (B).(C and D) show sagittal plane images from a patient 

with a left fronto-parietal high-grade glioma, language fMRI and arcuate fasciculus results overlaid in 

differential color coding for overlap and differences. DES spheres are shown in turquoise. 

 

 

 
Figure 3: Violin plots of minimum distances between tbfMRI, rsfMRI and Functionnectome maps and 

DES sphere (top), and DTI and CSD tractography maps (bottom). Means are indicated by horizontal 

lines inside each violin plot. Asterisks indicate statistically significant differences. TbfMRI = task-based 

functional MRI, BOLD = Blood oxygen level dependent contrast, rsfMRI = resting state fMRI. 
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Synopsis: The current study assesses neuromelanin sensitive MRI (NM-MRI) as a potential biomarker for treatment resistance (TR) in first episode schizophrenia 

patients. NM-MRI is a novel MRI sequence, which indirectly measures dopamine synthesis. Research using positron emission tomography (PET) imaging suggest 

that TR patients show lower dopamine synthesis than responders. We acquired NM-MRI in 61 patients with first-episode schizophrenia. Treatment response was 

determined during 6 months follow-up. TR patients showed significantly lower NM-MRI signal compared to responders. These findings are in line with previous 

PET studies and demonstrate the potential of NM-MRI as alternative and more accessible biomarker for TR. 

 

Purpose:  Treatment resistance (TR) in schizophrenia is a major clinical problem with 20-35% of psychotic patients showing non-response to standard antipsychotic 

treatment1. A biomarker that could predict TR is needed to reduce delays in effective treatment. A well-established finding in schizophrenia, using [18F]F-DOPA PET 

imaging, is increased striatal dopamine synthesis, but interestingly TR patients do not show this altered synthesis2. [18F]F-DOPA however is too costly and invasive 

to use for TR screening. A novel neuromelanin-sensitive MRI sequence (NM-MRI), which indirectly measures striatal dopamine synthesis3, has potential as biomarker 

for TR. NM-MRI signal is indeed increased in schizophrenia patients, but has not yet been evaluated in TR4. The current study assessed NM-MRI as a biomarker for 

TR and investigated if TR patients show lower NM-MRI signal than responders. 

 

Methods: 61 first episode schizophrenia patients underwent an MRI scan at baseline. Treatment response was determined during six months follow-up. A patient 

was classified as TR after showing no adequate response to a minimum of two sufficiently dosed conventional antipsychotics. MRI scans were conducted on an 3 

Tesla Ingenia MRI scanner equipped with a 32-channel sense head coil. T1-weighted scans were acquired for processing of the NM-MRI image (TR/TE=4.1/9.0 

msec; 189 slices; FOV=84×284×170 mm; voxel size= 0.9×0.9× 0.9 mm, FA = 8°). NM-MRI scan contained a T1-weighted gradient recalled echo sequence with 

resonance magnetization transfer preparation pulses (TE/TR=3.9/260 msec, FA=40°, 8 slices, slice thickness=2.5 mm, in‐plane resolution=0.39×0.39 mm2, 

FOV=162×199 mm, NSA=2;) and was placed perpendicular to the fourth ventricle floor with coverage from the posterior commissure to halfway through the pons 

(Figure 1). NM-MRI signal in the Substantia Nigra (SN) was measured as contrast ratio (NMcr), with the Crus Cerebri (CC) as reference region. The toolbox 

described by Wengler (2020)5 was used for processing of the NM-MRI scan. First the T1-weigthed scans were used to normalize the NM-MRI scans to MNI 

standard space using ANTS 2.3.1.6 The normalized NM-MRI scans were then spatially smoothed using 3D Gaussian kernels with full-width-at-half-maximum of 1 

mm. Template masks from a previous study3 were used to obtain the signal intensity (S) of the SN and CC (Figure 2). NMcr was calculated at each voxel in the 

NM-MRI images as NMcr= (SSN – mode(SCC)/ mode(SCC)) * 100. A One-way ANCOVA was conducted to assess group differences between TR and responders on 

mean NMcr controlling for age. Age was added as covariate, since neuromelanin levels in the SN show an inverted U-shaped age effect7. 

 

Results: At six months of follow-up 15 patients were classified as TR and 46 patients as responders. The two groups did not significantly differ on gender, IQ, use 

of medication, and substance use. However, the mean age of TR patients was lower than responders, t(59)= -2.876 p = 0.007. The ANCOVA revealed a significant 

effect of group (TR versus responder) on mean NMcr after controlling for age, F(1,58) = 5.064, p = 0.028. Age was not a significant covariate (F(1,58) = 0.457, p = 

0.502). In addition no correlation was found between age and NMcr (r =0.177, p =0.172).  

 

Discussion: Significantly lower NMcr levels were found in TR patients compared to responders. These findings are in line with the [18F]F-DOPA PET studies 

showing lower dopamine synthesis in TR compared to responders. This study demonstrates the promise of NM-MRI as biomarker for TR although the application of 

NM-MRI as a predictor for TR remains uncertain given the overlap in NMcr levels between TR and responders (Figure 3). A possible explanation for this might be 

that binary categorizing patients as either TR or responders is not appropriate as the response to antipsychotics could be a spectrum, including a group of partial 

responders. This will be further assessed. In addition, we will map the regional voxelwise variation within the current template mask. The template mask is 

purposefully over inclusive to ensure that all SN voxels are included in the mask and conversely some voxels outside the SN might be incorrectly included. This 

could influence the mean signal intensity to various degree in different subjects. No correlation was found between age and NMcr. Even though neuromelanin is 

known to increase with age, this increase is most steeply until the age of 20. Since the mean age of our two patients groups (21.3 and 24.3 years) is slightly higher, 

the effect of age on our results might be limited.  

 

Conclusion: This study demonstrated the potential of NM-MRI as a biomarker for TR in schizophrenia. Even though the results of this study show significant 

differences in NMcr between TR and responders, the predictive value of NM-MRI still requires further investigation. 
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Figure 1.  Example of the NM-MRI scan placement. The NM-MRI was placed perpendicular to the fourth ventricle floor with coverage from the posterior commissure to halfway through the pons. 

 

 

 

Figure 2: Spatially normalized NM-MRI image of a single subject. Template masks for the Substantia Nigra (SN) in yellow and for the Crus Cerebri (CC) in pink are overlaid onto the normalized image of 

a single subject. The graphs on the right are in pink the signal intensities (S) of the voxels in the CC and in yellow the neuromelanin contrast ratio (NMcr) of the voxels in the SN, calculated as NMcr=SSN – 

mode(SCC)/ mode(SCC) 

 

 

 

Figure 3. Neuromelanin contrast ratio (CR) of the treatment resistant (TR) and responders, with a significant difference between the TR (NMcr = 13.0) and responders (NMcr=13.9),  F(1,58) = 5.064, p = 

0.028. 

 

 

NM-MRI CC Signal 

NMcr in the SN 

 

P-006 
 

Abstract Category Clinical: Brain Matters 

 

  



  

 

 
 
 

I.M. van Ooijen1,2, K.V. Annink1, J. Dudink1, T. Alderliesten1, F. Groenendaal1, M.L. Tataranno1, M. Lequin2, J.M. Hoogduin2, F. Visser2, A.J.E. 

Raaijmakers2,3, D.W.J. Klomp2, E.C. Wiegers2, M.J.N.L. Benders1, J.P. Wijnen2 & N.E. van der Aa1   
1Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands; 2Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands; 

3Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.  
 
 

Acknowledgments / Funding Information: I.M. van Ooijen and K.V. Annink shared first authorship; J.P. Wijnen and N.E. van der Aa shared last authorship. 

 

Synopsis: 7T MRI in infants could improve cerebral diagnostic quality, but safety should be evaluated before standard use. In this study, twenty 

infants without respiratory support between term-equivalent age and 3 months corrected age, were scanned on 7T directly after 3T MRI. Vital signs 

(heart rate, oxygen saturation and respiratory rate), temperature (rectal, body and brain), COMFORT scale scores and adverse events were monitored 

throughout the process. None of these parameters changed around 7T MRI. Also, heart rate and temperature were not significantly different during 

7T, compared to 3T MRI. Therefore scanning infants at 7T appears to be safe. 

Introduction: Cerebral MRI in infants is usually performed on 3T. 7T MRI potentially increases the spatial resolution and improves the use of 

advanced imaging, such as MR spectroscopic imaging1,2 and vascular imaging3. Previously, we showed that global and peak specific absorption rate 

(SAR) levels at 7T in an infant model do not exceed the levels in an adult model4,5, and that hearing protection can be guaranteed6. Here we focus on 

related and additional effects: thermal heating of the infant and the potential effects of the main static magnetic field. We provide an overview of 

vital signs, temperature, COMFORT scale (CS) scores and adverse events (AE’s) before, during and after 7T MRI. 

Methods: Twenty clinically stable infants without respiratory support between term-equivalent age and 3 months corrected age, were scanned at 7T 

right after their clinical 3T MRI scan (both Philips Healthcare Best, The Netherlands). At 7T, a 2-channel transmit 32-channel receive head coil 

(Nova Medical, Wilmington, MA) was used. All infants were sedated before 3T MRI. 

Vital signs (heart rate (HR), oxygen saturation (SpO2) and respiratory rate (RR)) were closely monitored during both MRI scans. HR and 

SpO2 were continuously measured from 1-2 hours before, until 18 hours after both MRI scans. Temperature was measured rectally before, and every 

6 hours after the MRI scans until 18 hours after MRI scans. Body temperature was measured continuously during both MRI scans via a sensor 

attached to the abdomen. 1H-MRS data was acquired (3T: PRESS, TE/TR=38/2000ms; 7T: STEAM, TE/TR=10/2000ms) from a single voxel in the 

left deep gray matter. From this data, brain temperature was determined by assessing the chemical shift difference between water (H20) and N-acetyl-

aspartate (NAA) (figure 1), as described before7,8,9. 

The CS10 is a scoring system containing 6 items (alertness, agitation, crying, body movements, facial muscle tension and overall muscle 

tension) with a 5-point scale (1=comfortable and 5=discomfort). In general, a score ≥14 indicates discomfort. The CS was scored 1-2 hours before 

MRI scans, during transport after both MRI scans, and every 6 hours after the MRI scans until 18 hours after MRI scans. AE’s (desaturation (SpO2 

<85%), apnea (>20 seconds episode of cessation of breathing), hypothermia (<35.5ºC), hyperthermia (>38.5ºC), bradycardia (<100 bpm), 

tachycardia (>200 bpm), need for interruption of scanning, stopping scans prematurely and events like regurgitation mentioned by parents after 

discharge) were monitored. We used the paired-samples t-test or Wilcoxon signed ranks test (for not-normal distributed data) to assess differences 

between 3T and 7T MRI. 

Results: Table 1 shows the baseline characteristics. There was no significant difference between the HR at the end of 3T compared to the end of 7T 

(mean bpm: 144 and 140, respectively; Z=-0.806; p=0.420). SpO2 was significantly lower at the end of 3T compared to the end of 7T (mean SpO2: 

94% and 96%, respectively; p=0.002). Temperature was stable during the whole observation period (figure 2A). Also, brain temperature did not 

change at 7T, compared to 3T (mean temperature: 36,1ºC and 36,0ºC, respectively; p=0.998), (figure 2B). 

CS scores showed no difference during transport after 3T compared to transport after 7T (mean CS: 8.9 and 10.7, respectively; Z=-1.670; 

p=0.095), (figure 3). One infant showed a highly increased CS during transport after 7T MRI, most likely due to being hungry, since the infant 

quickly recovered after feeding. At last, no changes in AE’s were reported after 7T MRI (table 2). Apnea, hypothermia, hyperthermia, bradycardia, 

need for circulatory or respiratory support and AE’s after discharge never occurred. Desaturations were related to a premature breathing pattern, 

almost always already occurring before 7T MRI. Tachycardia in one infant during 7T was induced by crying and directly recovered after comforting 

the infant. One infant showed regurgitation of milk after 7T MRI, already occurring before MRI scans. 7T scans were paused a few times due to 

technical problems, movement artifacts or inadequate monitoring. Three infants cried during 3T MRI and during 7T MRI, all were comforted 

quickly. 

Discussion and Conclusion: No changes in vital signs, temperature, CS scores and AE’s were found in infants around 7T MRI. Also, HR and 

temperature were not significantly different during 7T, compared to 3T MRI. Brain temperature was lower compared to rectal or surface 

temperature, this is in line with previous studies7,8. We have used localized F0 determination of water as determined automatically by the scanner 

prior to the metabolite scan. Even more accurate assessments may be obtained by using the non-suppressed water scan and to evaluate potential 

frequency drifts of NAA during the metabolite scan, or to use metabolite cycling with non-suppressed water12. Lower SpO2 during 3T could be 

caused by sedation administered before 3T MRI, with effects of sedation possibly wearing off during the 7T scan. This could possibly also lead to 

slightly higher comfort scores after 7T. 

Ultra-high field strengths pose potential areas of risk for the infant. The SAR and sound pressure levels were previously modeled4. Here we 

show that 7T MR scanning in infants induces no significant changes in vital signs, temperature, CS scores and AE’s. Therefore, 7T MRI appears to 

be safe in infants without respiratory support. Future research should elucidate the advantages of 7T compared to 3T MRI, possibly improving 

diagnostic quality.  
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Figure 1. Spectrum of the single voxel 1H-MRS in the left deep gray matter of one infant during 7T MRI. The ppm of the H20 peak is assumed to be the center frequency (F0). The 

frequency offset of the NAA peak is determined using the HLVSD option, locating the fifteen highest peaks10. This was used in the formula (T = 263 + NAA × 85.76; see7), which 

results in a temperature (T) of 35.7ºC in the deep grey matter of this infant. 

 

 

Table 1. Baseline characteristics of the infants included in this study.  

 
Figure 2. (A) temperature before and every 6 hours after the MRI scans until 18 hours after MRI scans measured rectally (blue), and during MRI via a sensor attached to the infants 

abdomen (black). (B) brain temperatures measured with 1H-MRS in the left deep gray matter at 3T and 7T. 

 

Figure 3. COMFORT scale10 scores measured 1-2 hours before MRI, during transport between MRI’s and every 6 hours after the MRI scans until 18 hours after MRI scans. In 

general, a score of 14 or more means the baby experiences discomfort, indicated by the dotted line.  

 

 

Table 2. All observed adverse events monitored throughout the study.  

*a: crying but able to comfort; b: technical problems; c: movement artifacts; d: inadequate monitoring and e: other. 
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Synopsis 

Many patients are unaware of the implications of the General Data Protection Regulation (GDPR) on their medical data, including the transparency principle stating 

that individuals should be informed about the use of their personal data in a clear, concise and accessible manner. In order to overcome this challenge, the COST 

Action ‘Glioma MR Imaging’ developed an animation video in 17 languages to inform patients about the importance of reuse of medical data for research and how 

their data is protected. It is expected that implementing this video throughout Europe will engage and educate patients and facilitate reuse of medical data. 

Introduction 

Data acquired for clinical purposes are often unreachable for scientific research. The General Data Protection Regulation (GDPR) in the EU introduced new safeguards 

to ensure patient privacy, including the transparency principle that states that information about data protection should be easily accessible in a concise and clear way, 

using plain language.1,2,3 Patients are often unaware that they can become active participants in the scientific process by allowing the reuse of their medical data and 

that privacy protection rules guarantee safe data-sharing.  

Having these challenges in mind, the European Cooperation in Science and Technology (COST) Action ‘Glioma MR Imaging 2.0’ (GliMR; glimr.eu) has developed 

an animation video that can be used to inform patients. GliMR is a network of clinicians, researchers and other stakeholders, that attempts to streamline and improve 

the diagnosis, prognosis, follow-up, and evaluation of treatment of brain tumours using advanced MRI techniques.4 Previously, a joint-initiative from GliMR and the 

Open Brain Consent resulted in the development of a GDPR-compliant template consent form and associated data user agreement.5 These templates are valuable 

tools to inform patients and healthy volunteers about data usage and sharing related privacy regulations, and facilitate the collection of consent. Unfortunately, patients 

are only exposed to this information when recruited specifically for scientific studies.  

Therefore, GliMR released an animation video as a tool for communication towards patients, which can be used as part of the data protection strategy within hospitals 

and healthcare institutions across Europe.  

Methods 

Initially, a GDPR-specialist and hospital data protection officer were consulted to collect information about the current regulations for reuse of medical data in science. 

Using this information, the main messages and focus points of the animation were identified. The video had to be short, clear, visual, and have on-screen text crucial 

for situations in which no sound is available, e.g. in waiting rooms, as illustrated in Figure 1 and 2. Additionally, a patient testimonial format was chosen, with glioma 

as a case sample. These points were used to develop a video script and storyboard in English by the private video company, WellPlayed Video (Ghent, Belgium). 

Several versions were revised by clinicians and researchers of GliMR, the GDPR-specialist, and patient representatives assembled by the International Brain Tumour 

Alliance (theibta.org). Simultaneously, the script was translated by native GliMR-members into 16 additional languages: Bulgarian, Croatian, Czech, Danish, Dutch, 

Estonian, French, German, Greek, Italian, Norwegian, Polish, Portuguese, Romanian, Slovak, and Spanish. These translations were checked on clarity by native 

laypeople and patients. After recording the scripts by professional voice actors and final feedback from all involved parties, the videos were finalised. The videos 

were released during the International Brain Tumour Awareness Week 2021, and distributed via the GliMR-members to over 21 countries and 72 hospitals and 

research centers. Additionally, a press release has been released on AlphaGalileo.6 

Results 

A short and clear animation video is available in 17 languages, with and without subtitles. The video focuses on three main messages: 

1. Reusing and sharing medical data for scientific purposes is possible. 

2. When data is reused for scientific research, multiple safeguards are in place to keep the patients’ privacy protected. 

3. Medical data is needed: by sharing their medical data, each patient can make a difference to help discover more about pathologies and their cures. 

The videos are publicly available under a CC-BY-ND Creative Commons license. For each language, a web page is available, which can be found via glimr.eu/gdpr-

video. These web pages provide context about the video and information on its use. This information is mainly for data protection officers, healthcare professionals, 

clinicians and researchers who want to use the video to inform their patients. 

Discussion and conclusion 

Within this project, an animation video was developed to inform patients about the reuse of their medical data and the protection of their privacy. More importantly, 

the video tries to involve patients in medical research, by stressing the importance of their data for future scientific breakthroughs.  

The video is a useful tool to comply with the transparency principle of GDPR, by providing data privacy related information in a concise, transparent and intelligible 

manner. In the video, clear and plain language is used, verified by laypeople and patients. It can be used for free by all types of healthcare professionals, hospitals, 

institutions, patient organizations and other relevant stakeholders. The video can be broadcasted in the waiting room, embedded on a website, or shared via social 

media. Therefore, this video can be part of the data protection strategy as the first layer of information. However, it cannot be used as the sole resource of information 

for patients, as it only provides an overview of the major safeguards to protect patient privacy. Each institution, hospital, and healthcare professional is responsible to 

provide additional layers of information and correctly implement other European, national and local privacy-related measures. 

In conclusion, this video can be part of the data protection strategy of hospitals and healthcare institutions throughout Europe. The implementation of this video in 

daily clinical and research practice is expected to engage patients and facilitate the reuse of medical data. 
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Figure 1 - Still from the video, illustrating the style of the animations. 

 

Figure 2 - Screenshot from the animation video. Key words and sentences appear as on-screen text to increase clarity in situations during which no sound can be 

played, for example in a general practitioner's or hospital waiting room. 
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Synopsis: A multi-echo MRT approach is presented for application in RF safety assessment and validation of thermal simulations. By water-fat separation, more 

accurate determination of the drift field is possible. The method was tested in the thigh at 7T, using multi-transmit coils. Precision and accuracy were improved 

considerably compared to a previous single-echo fat-referenced method (precision: 0.09 vs 0.19 °C). Comparison of measured temperature distributions to 

simulated counterparts show good relative agreement in three subjects for multiple RF shim settings. Strikingly, simulated heating magnitudes mostly 

underestimated the observed heating with varying extent, suggesting a role for subject-specific parameters, such as perfusion. 

Introduction 

Current guidelines1 on RF safety in MRI are based on specific absorption rates (SAR); which does not necessarily correlate with local temperature increase2-4. Therefore, more insight 

into local temperature elevations would be highly desirable. Similar to SAR, temperature rise in MRI can be simulated. Unfortunately, these simulation models still lack solid 

validation5. MRI is capable of measuring the spatial distribution of temperature rise (MR thermometry, MRT). However, most studies on MRT show application for thermal 

treatments. Here, the temperature rise is considerable and often localized. Validation of thermal simulations of RF exposure requires much more precise and accurate MRT methods. 

First of all, compensation is required for the slow variation in field strength over time (drift field). These can be measured using field cameras6, but this requires considerable 

investment. Alternatively, a fat-referenced approach7 for drift field correction using the subcutaneous fat layer and near-harmonic 2D reconstruction8 has been presented. However, 

this method (single-echo model) is highly sensitive to fat layer thickness. Ideally, not only the subcutaneous fat layer but all fat signal within the image should be used. This was 

demonstrated for focused ultrasound MRT, using multiple echoes to separate the water and fat signal to consequently retrieve drift fields and temperature rise9,10. The aim of this 

study is to apply the same method for measurement of RF heating. For this purpose, the method was adapted to include the Salomir method8 within the iterative optimization (adapted 

multi-echo model). The resulting method was tested for the ability of measuring temperature rise in the thigh at 7T. 

Results 

The method as presented by Poorman et al.10 is based on the acquisition of multi-echo images and a signal model (figure 1a). For our purpose, we replaced the basis of polynomials 

for the drift field by a basis of spherical harmonics. Additionally, adaptations were made to the initialization (figure 1a); where the drift field is first fitted using only regions with high 

fat content. Subsequently, a good initialization for the whole region of interest is acquired by applying the method of Salomir8. To test the adapted multi-echo model, MRT 

measurements were performed on the thigh and compared to thermal simulations. 

Acquisition: MR scans were performed on a 7T system (Achieva, Philips Healthcare, Best, NL). Thigh imaging was performed in 3 subjects (3 male, age 22-42, BMI 18.4-24.9) 

where the leg was surrounded by 4 fractionated dipole antennas with receive loops (figure 1c)11. A subject-specific simulation model was generated for every subject and antennas 

were labeled with vitamin markers and placed in a plexiglass holder. For temperature measurement, spoiled 13-echo gradient echo MRT scans (TE1 13.48 ms, TEspacing 0.66 ms, TR 

30 ms, 2.1x2.1x8 mm3 resolution, 170x170x8 mm3 FOV, flip angle 11°, single-shot, cardiac triggered) were acquired for 300 dynamics (296-399 seconds): a baseline scan without 

heating and a heating scan, constituting a 10 kHz off-resonance block pulse to acquire an average power of 5.3 W per channel12. 

Simulations: After MRT, electromagnetic and thermal simulations (Sim4Life, ZMT, Zurich, CH) were performed on the Duke model13. The right thigh was replaced by a patient-

specific model (figure 1d). Power and phase settings of individual channels were numerically optimized to ensure matching of measured and simulated |B1+|. 

Discussion and conclusion 

In the MRT images acquired without heating (figure 2), the lower temporal standard deviation over the slice demonstrates a considerably higher precision (0.09 vs 0.19 °C, averaged 

over all volunteers) for the adapted multi-echo model compared to the single-echo model. A similar comparison between both approaches is provided in figure 3, where reconstructed 

temperature and field drift distributions are shown after 300 dynamics with heating. A graph diagram of heating over time is provided for 4 voxel locations (figure 3b). Again, the 

precision for the adapted multi-echo model is superior. Also, the method is more accurate because of its superior drift field reconstruction; MRT scans in volunteer 3 without heating 

and volunteer 2 with heating clearly show a residual drift field for the single-echo correction. The results of subject-specific electromagnetic simulations show that simulated |B1+| 

distributions are in excellent agreement with measurements (figure 4a). Locations of heating hotspots (figures 4b/c) in measurements match with simulations in most slices and 

volunteers. However, the simulated heating magnitude mostly underestimates the observed heating, with the degree of underestimation varying between volunteers. The animated 

multi-slice heating over time (figure 5) shows the occurrence of hotspots in the bottom and top right leg regions. 

Discussion and conclusion 

We have adapted the multi-echo MRT methodology as presented by Poorman et al.10 for measuring RF induced heating in MRI. The proposed method reaches higher precision and 

accuracy in comparison to a previous method7,12. This is achieved by multi-echo water-fat separation, enabling the method to assess drift field correction using the fat signal in every 

voxel which severely reduced the sensitivity to fat layer thickness. Future work will focus on application in other imaging targets such as brain or prostate. Also, the effect of gradient 

imperfections on local TE14 and accounting for motion will be considered, which will most likely further improve precision. Finally, patient-specific perfusion properties will be 

explored in thermal simulations to find an explanation for the deviation in heating magnitude. 
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Figure 1: Schematic representation of the method to iteratiely solve temperature and drift 

components from the gradient echo signal equation (a). Parameter definitions are provided in 

(b). Essential adaptation with respect to the original method10 is that Salomir’s algorithm8 is 
applied during initialization to prevent local minima caused by diffusive RF heating. 

Experimental imaging setup (c) where the antennas are placed in the plexiglass holder, and 

corresponding setup in the simulation environment (d) where the patient-specific mode is 

merged with the Duke model. 

Figure 2: Spatial temperature maps without heating averaged over 300 dynamics in 3 volunteers 

(V1, V2 and V3) with various fat layer thicknesses; relative temperature maps were calculated 

both with the adapted multi-echo and the single-echo model. For each volunteer and model, a 

corresponding spatial map of temporal standard deviation is provided. 

Figure 3: Spatial temperature maps after 319-385 seconds of heating with 5.3 W per channel in 

3 volunteers (V1, V2 and V3) (a); relative heating maps were calculated both with the adapted 
multi-echo and single-echo model. A corresponding time series (b) is provided for the indicated 

voxel locations. The calculated drift field at the end of the series is indicated in (c). 

 

Figure 4: Measured |B1+| distributions and simulated counterparts in the central slice of 3 
volunteers (a). Measured spatial heating distribution after 300 dynamics and their simulated 

counterparts in the central slice (b). Heating scan in volunteers 2 and 3 were performed with 

three and two different shim settings, respectively. For volunteer 3, the data of shim 2 was 

recorded with a multi-slice acquisition, for which simulated heating distributions are also 

provided in the corresponding slices (c). 

Figure 5: Animated gif representing heating distributions over a time period of 340 seconds in 

five 8 mm slices (slice gap of 10 mm). Heating hotspots are clearly visible in the top right and 
bottom region of the leg. The central slice shows the most gradual temperature increase, which 

is where the algorithm is most confident. 
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Retrospective correction of B1 field inhomogeneities in T2w 7T prostate patient data 

 

 

 

Synopsis: Prostate imaging at ultra-high fields is heavily affected by B1 field induced inhomogeneities. This not only results in unattractive images but it also 

might affect  clinical diagnosis . To remedy this we developed a deep learning model that retrospectively corrects for the bias field. We applied this model to a 

clinical data set and demonstrated its performance in a qualitative manner. The results indicate that the model is able to drastically reduce the inhomogeneities in a 

variety of cases while the tissue contrast is generally maintained and the underlying anatomy has been successfully recovered. 

 

Purpose: T2w prostate imaging at 7T has potential for clinical purposes because of its superior resolution and enhanced tissue contrast. In addition, the modality is indispensable for lesion localization in 

(X-nuclei) MR spectroscopy. However, the images suffer from  B1 field induced inhomogeneities.  B1 shimming1 , TIAMO2 and parallel transmit3 are techniques that can reduce but not avoid these 

inhomogeneities. Although the imaging target can be clearly depicted, the surrounding signal voids and overall transmit and receive field inhomogeneity clearly reduce the attractiveness for clinical users. 

In addition, inhomogeneities may hinder the detection of anomalies and automatic image post processing methods such as segmentation become more difficult4,5. Reduction of these inhomogeneities is 
expected to improve usability and facilitate the adoption of 7T for clinical body imaging applications. For this purpose, we present a deep-learning approach to retrospectively correct 7T prostate images to 

alleviate the B1-field induced signal inhomogeneities.  

This work is a continuation of previous work where a neural network was trained to correct multi channel acquisitions of inhomogenous prostate images6. With the current extension we enable retrospective 

application on existing clinical data sets.  The performance of this approach is tested on T2w 7T images from 14 prostate cancer patients.  

 

Methods: We consider the 7T image as the product of the underlying homogeneous image and a distribution of B1-field induced inhomogeneities, which we call the bias field. The method was developed 

for prostate images obtained with a transmit-receive array of eight fractionated dipole antennas7. We have created a training data set that mimics T2w prostate images at 7T using homogeneous clinical 

prostate images at 1.5T and simulated B1 field distributions at the 7T Larmor frequency, see Figure 1. A ResNet architecture and a Perceptual Style Loss were used for training, where the goal of the 
training was to predict the bias field from the artificial 7T input image. To obtain a bias field corrected image during inference we divide the input image by the predicted bias field from the trained neural 

network. This approach was preferred over predicting a homogeneous image directly to avoid that the network would be trained to fill signal voids with ‘invented’ tissue structures.  

The trained network was applied retrospectively to T2w 7T images of 14 prostate cancer patients (age 48-72).  The TSE acquisition was obtained with an RF coil array setup with eight transmit/receive 

fractionated dipole antennas and sixteen receive-only loop coils. A repetition time  of 10s, and a TE of 140ms was used with a reconstructed pixel size of 0.28x0.28x3mm. 

 

Results: Figure 2 displays the original and corrected  images. Generally speaking, the corrected images from the deep learning model show a drastic decrease of inhomogeneity without significantly 
altering the contrast between fat- and muscle tissue, or of the prostate tissue itself. In mild cases, such as example 1, 5, 8 and 9, we notice an almost complete removal of the bias field and recovery of the 

underlying anatomy. Whereas more severe cases, where RF shimming was performed poorly such as example 11, 12 and 13, the model has difficulty in recovering the underlying anatomy and returns noise 

instead. 

In Figure 3 we present a close-up of the same images to accurately asses the quality of the biasfield reduction around the prostate. Here we notice that in example 2, 4, 6, 12, and 14 our method is able to 

recover obscured parts of the peripheral which is important for asessment of extraprostatic extension. 

Moreover, in example 2, 4, 6, 7 and 14 we see a great enhancement of the edges at the rectum wall,  although sometimes these enhancements are accompanied by an overcompensation resulting in bright 

regions inside the rectum.  

 

Discussion: The proposed method clearly improves the prostate images. B1-field induced inhomogeneities in signal intensity are removed almost completely. Please note that the method only corrects for 

global signal inhomogeneity but does not restore loss of local contrast because of suboptimal flip angles.  As expected, the choice for the bias field as network output ensures that areas with low signal 
intensity have been corrected by noise amplification and not by a plausible but imaginary anatomy structure. In addition, in most cases the model does not affect tissue contrast however sometimes it does 

enhance the contrast of the prostate tissue as shown in example 4, 8 and 13. Remarkably, these patient images were acquired with a 24 element receive array while the method was trained on 8-channel 

receive fields, which apparently does not affect the performance. Note that the images were acquired in a realistic clinical work flow which sometimes resulted in suboptimal B1 shimming, e.g. 10, 11 and 

12. Future work will investigate the apparent improvement in clinical usability by expert rating. 

 

Conclussion: We have developed a method that is able to retrospectively correct the B1-field induced inhomogeneities in T2w prostate images at 7T. The model was trained on an artificial 7T data set by 

combining a set of clinical T2w 1.5T prostate images with simulated B1 field distributions at 7T. The model was tested using T2w 7T images from 14 prostate cancer patients. Corrected images are 

drastically improved with much less signal inhomogeneities while signal contrast throughout the image is preserved.  
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Figure 4:  Animated representation of 

inhomogeneity correction over all slices of two 

selected patients 

Figure 1: Results of the B1 field 

inhomogeneity correction on T2w 7T images 

of 14 prostate cancer patients. Figure 

presents images as obtained from the scanner 

accompanied by the corrected images. For 

each patient, only the center slice was 

depicted to demonstrate the performance of 

our model.  

 

Figure 2: Close up of the images as 

presented in figure 2. This view enables more 

close examination of the performance of the  

model in the periphery of the prostate and the 

internal tissue structures of the prostate. 

Figure 3: Schematic representation of the 

pipeline for creating artificial training 

data. Simulated 7T B1 elds of the coil 

array are registered to the body  

contour of the 1.5T prostate image, 

followed by a RF shimming routine on the 

B1+ coil distributions. Secondly, the 

obtained transmit eld is  

input to a signal model to imitate the 

signal of a TSE scan. By multiplying the 

obtained signal with the registered 

receive sensitivities (B1- fields) we  

obtained the bias eld per coil. Note that 

the sum-of-magnitude bias eld, in the blue 

colored box, is used as target image for 

the deep learning model. The sum-of-

magnitude artificial 7T image, also in the 

blue colored box, is used as input image 

for the deep learning model 
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Synopsis: We developed several ASL sequences at 7T with a FAIR-QUIPSS II labeling scheme and various spiral readout strategies using Pulseq. 

Iterative algebraic image reconstruction was performed with CG-SENSE, using the field evolution data measured with external NMR probes. Robust 

performance in detecting brain’s perfusion signal was observed in 2D single- and multi-band spiral acquisitions especially at relatively high spatial 

resolution, without the requirement for a longer scan time. 3D spiral acquisition showed reduced contrast level in perfusion maps and requires further 

investigation and optimization. 

Investigating Spiral Arterial Spin Labeling with Pulseq and Field Monitoring at 7T 

Purpose: Pulseq1 is an open-source MR pulse sequence development package with direct access to all elements in MR sequences including RF pulses, 

gradients, ADCs and triggers, without going through the time-consuming vendor-specific sequence programming to investigate sequence behavior. 

Field monitoring with additional NMR probes2 enables high-fidelity measurement of the gradient performance and therefore field correction during 

image reconstruction. In this study, combining the two techniques, we aimed at developing and implementing Arterial Spin Labeling (ASL) acquisitions 

to investigate the possibility of improving the quality of the measured perfusion signal by comparing perfusion maps from various spiral readout 

strategies. 

Methods: FAIR-QUPISS II labeling module using a tr-FOCI inversion pulse3 was implemented for the spiral ASL sequence using Pulseq in Matlab 

(The MathWorks, Inc.). The sequence diagram is shown in Fig.1.  

Two resolution levels, denoted as low-res (8.82mm3) and high-res (2.43mm3), were chosen following an earlier study4. 2D single-band and multi-band 

CAIPI-sampled spiral5, and 3D stack-of-spirals (SOSP) acquisitions were investigated. The acquisition parameters are listed in Fig.2. For 2D 

acquisitions, slices were acquired in the ascending order without gap between the neighboring slices. Same number of repetitions was measured for all 

acquisition strategies to facilitate the comparison afterwards. The sequences designed using Pulseq were compiled using a vendor-specific interpreter 

and executed on a 7T whole body Siemens scanner (Siemens Healthineers, Erlangen, Germany) with a 1x32 channel head coil (Nova Medical, 

Wilmington, MA, USA). One participant was tested with all acquisition strategies. 

Field monitoring was performed after image acquisition with 16 F19 NMR probes (Skope, Zurich, Switzerland) placed at the iso-center of the scanner. 

Examples of measured 1st order field evolution are shown in Fig. 3. GPU-accelerated algebraic reconstruction with field correction of up to 2nd order 

based on SENSE model6 was programmed in Matlab. Retrospective motion correction was performed using the realign function from SPM (SPM12, 

www.fil.ion.ucl.ac.uk/spm/software/spm12/). tSNR maps were computed for quality control. Relative Perfusion-weighted (PW) images, calculated as 

the difference between label and control images normalized to control images, were generated to evaluate the performance of perfusion signal detection 

for every encoding scheme. 

Results: 

Examples of reconstructed control images from every acquisition scheme with the corresponding tSNR maps are shown in Fig.4. High-res acquisitions 

showed more clearly delineated tissue boundaries compared to the low-res acquisitions. 3D SOSP acquisitions showed lower tSNR compared to that 

of 2D. As expected, due to 74% decrease in voxel size and 56% increase in undersampling factor, the tSNR of the high-res acquisitions was significantly 

lower than that of low-res acquisitions.  

Fig. 5 shows the relative PW images from various acquisitions. With our parameter settings, the 3D high-res acquisition showed very noisy perfusion 

signal without distinguishable difference between grey and white matter and was therefore not included in the figure. Low-res single-band and multi-

band acquisitions both showed perfusion signal nicely following the grey matter. Higher contrast level was seen in the multi-band images. 3D low-res 

acquisitions yielded similar spatial distribution of perfusion signal but with slightly lower contrast level and less blurring. The advantage of high-res 

acquisition can be observed in the PW images from the 2D single-band acquisitions with spatially more clearly resolved perfusion signal, albeit with 

a higher noise level. In addition, the 2D high-res acquisition showed the highest contrast level among all examined cases. 

Discussion and Conclusion: 

In this study, using Pulseq and field monitoring, we successfully implemented FAIR-QUIPSS II ASL acquisitions and reconstructions with spiral 

readouts. Different levels of resolution with 2D and 3D spiral sampling were investigated. High resolution perfusion-weighted signals were obtained 

with the 2D acquisition. Higher tSNR is seen in 2D acquisitions likely due to reduced physiological noise compared to the 3D scenario. The measured 

perfusion signal, however, showed a more complicated pattern following the change in acquisition scheme. The high perfusion signal in the 2D high-

res acquisition could be linked to reduced partial volume effects. The very low contrast level in the high-res 3D acquisition compared to its 2D 

counterpart requires further investigation. The long readout time in the 3D approach, i.e., 24 times as long as the 2D acquisition for each slice with our 

parameters, could result in larger physiological noise and larger dynamic change of the local magnetic field during the imaging period. Future 

investigation on optimizing the 3D acquisitions shall include approaches such as reducing the imaging time per volume, flip angle optimization schemes 

and different sampling orders in the slice direction. 
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Fig. 2 Acquisition parameters for all spiral ASL 

acquisitions investigated in the study. In-plane 
resolution was calculated according to the measured 

FOV in k-space. 

Fig. 3 Examples of measured 1st order field evolution from (a) multi-band low-res 

acquisition (orange kz refers to CAIPI shifting), (b) 3D stack-of-spiral acquisition and (c) 

low-res (green) and high-res (red) acquisition projected on kx-ky plane. 

 

 

Fig. 1 Sequence diagram of FAIR-QUIPSS II ASL acquisition. The tr-FOCI inversion7, QUIPSS II8 saturation and imaging units are color-coded 

as red, purple and green, respectively, as also depicted in the images on the right for both label and control cases. 

 

 

 

 

Fig. 4 Examples of control images (top row) and tSNR maps (bottom row) from low and high 
resolution acquisitions with various spiral encoding strategies. 

Fig. 5 Relative perfusion-weighted images from various acquisition strategies. The 
results from high-res 3D stack-of-spiral acquisition are not shown due to the very low 

contrast-to-noise ratio.   
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Synopsis: We implemented spin-echo line-scanning (SELINE) fMRI through a simple rotation of the spin-echo refocusing gradient to a plane perpendicular to the 

excited slice and removing the phase encode gradient. This technique promises a combination of high spatio-temporal resolution and specificity of functional 

responses to the microvasculature. We compared SELINE data to the corresponding gradient-echo version (GELINE). We demonstrate that SELINE showed much 

improved line selection compared to GELINE, albeit at the cost of a significant drop in functional sensitivity. The low functional sensitivity needs to be addressed 

before SELINE can be applied. 

Summary of Main Findings: Spin-echo line-scanning (SELINE) fMRI promises a high spatiotemporal resolution in combination with specificity to 

microvasculature. SELINE showed much improved line selection compared to GELINE, at the cost of a drop in sensitivity. 

Introduction: Neurons cluster into sub-millimeter columnar and laminar structures and neural activity occurs at millisecond resolution. The recently described 

gradient-echo line-scanning (GELINE) sequence achieved very high resolution in humans1,2 across cortical depth (250μm) and time (~200ms), by sacrificing 

volume coverage and resolution along the cortical surface. This high spatiotemporal resolution, when combined with a method specific to microvasculature, would 

allow us to isolate microvessel responses and to characterize the distribution of blood flow and laminar fMRI profiles across cortical depth. Spin-echo (SE) BOLD 

contrast is ideal for this purpose, since it is the technique that is most dominated by microvasculature signal changes3. Moreover, spin-echo line-scanning (SELINE) 

offers beam excitation without the outer-volume suppression (OVS) pulses, which are necessary in the case of GELINE, through a simple rotation of the plane for 

the refocusing gradient, to a perpendicular plane. Here, we present the first implementation of SELINE for BOLD fMRI in humans at 7T. We compared the 

performance of SELINE with a GELINE acquisition in term of temporal signal-to-noise ratio (tSNR) and BOLD sensitivity.   

Methods: We scanned 4 healthy participants at 7T MRI system (Philips, Netherlands) equipped with a 2Tx/32Rx head coil (Nova Medical, USA) and 1 participant 

with an 8Tx/32Rx. In addition, multiple pilots were conducted to optimize the parameters used here (Fig.1). We modified a 2D spin-echo sequence for the SELINE 

data acquisition (Fig.2a) where the phase-encoding in the direction perpendicular to the line was turned off: line resolution=250μm, TR=500ms, TE=50ms, 

fa=146°, array size=720, line thickness=2.5mm, in-plane line width=5mm, fat suppression using SPAIR. The 180° refocusing pulse was a sinc pulse with duration 

of 2.8ms and its gradient was moved to the phase encoding direction, to refocus only a single beam of the excited slice (Fig.2b). Pairs of crusher gradients 

(25mT/m, duration=1.9ms) were added around the refocusing gradient in every direction, to avoid free induction decay artefacts, while spoilers introduced at the 

end of the sequence eliminated residual transverse magnetization. GELINE data acquisition was based on the method we previously described1, i.e. using OVS 

pulses for line excitation. A TR of 500ms, however, was used to match the SELINE acquisition. SELINE and GELINE data were reconstructed as described in 

Raimondo et al(1), and we also applied a NORDIC-based denoising step4,5. For both acquisitions, the line was positioned perpendicular to the visual cortex as much 

as possible. We acquired one run of functional data with each protocol, using a block design visual task consisting of a 20Hz flickering checkerboard, presented for 

10s on/off. Runs lasted 6 minutes and 20s, starting with 10s baseline. For one subject 2 GELINE runs and 4 SELINE runs were acquired to increase the SNR. 

Functional data were analyzed using a general linear model (GLM) approach. We also calculated the tSNR across the line. Additionally, we acquired matched 2D 

gradient-echo (GE) and SE-EPI image series at lower spatio-temporal resolution (1.5mm isotropic, TR=2.5s), to compare functional runs of single slices and line 

selection images with the same visual task. 

Results: Fig.2 shows the SELINE sequence (a), the signal-yielding area (b), an example coronal slice (c), the line signal distribution (LSD) image (d), with signal 

coming from the intersection of excited and refocused planes, and an example line-scanning acquisition (e). In Fig.3a, a representative participant’s LSD profile is 

shown for SE and GE acquisition, obtained by averaging over all the voxels in the read-out direction of an LSD image. Notice the much sharper profile of the 

SELINE. Fig.3b shows the tSNR for SELINE and GELINE for the same subject. SELINE tSNR values were consistently lower than GELINE tSNR, likely driven 

by TE as well as differences in the profile area. SELINE acquisitions yielded very low functional responses. Fig.4 shows the beta values obtained from the GLM of 

1 run of SELINE (a)  and GELINE (b)  and for the average of respectively 2 and 4 runs (c and d), overlaid on the acquired slices for SE and GE. Finally, Fig.5 

shows the activation maps of the SE and GE-EPI slices and LSD images. SE-EPI showed lower functional responses than GE-EPI, as expected6. LSD functional 

images confirmed good beam selection, but also highlight the limited available functional signal in SELINE.    

Discussion & Conclusion: We reported the first implementation of SELINE in humans at 7T and showed improved line selection without the need for OVS pulses. 

The improved line definition, and also the inherently lower sensitivity of SE-BOLD, led to lower tSNR and beta values compared to GELINE. We could not detect 

any task-driven activation in the SELINE, while GELINE showed clear activation pattern in visual cortex. In the lower resolution functional images (Fig.5), 

activation is barely detectable on the SE-LSD images. The SELINE acquisition has even lower SNR due to the smaller voxel volume (1.8 times lower). Hence, we 

conclude that the implementation of SELINE currently lacks adequate sensitivity for line-scanning fMRI. We argue that SE has a high potential for line-scanning 

applications due to its innate properties of line selection and microvascular selective functional contrast. Future work will aim at improving the SELINE sensitivity 

by incorporating a multi-echo readout, high-density surface coils7 and averaging across more than 4 runs. 
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Figures: 

N transmit 

channels scan mode TR [ms] TE [ms] FA [deg] BW [Hz/pixel] fat suppression 

2 2D 500 50 146 28.89 SPAIR 

8 MS 300 40 148 28.95 SPIR 

8 MS 200 50 154 28.95 SPIR 

8 MS 190 43 154 28.95 SPIR 

8 MS 190 40 154 28.95 SPIR 

8 MS 355 40 146 28.95 SPAIR 

8 MS 500 50 140 28.95 SPAIR 

Fig.1: pilot sequence parameters for testing the optimal SELINE acquisition parameters. MS=multi-slice. 

 

Fig.2: (a) SELINE sequence. Notice the absence of phase encoding gradients and the 2 different orientations of the 90° and 180° gradients to excite and refocus 

perpendicular planes (b), leading to a signal coming from a beam. (c) acquired slice with spin-echo sequence. (d) LSD image as result of the intersection of excited 

and refocused plane. (e) spin-echo line-scanning acquisition, plot of the signal versus position and time.  

 

Fig.3: (a) normalized LSD profile for spin-echo (blue line) and gradient-echo (red line). Notice the improved line definition in SELINE. (b) tSNR for spin-echo 

line-scanning (blue line) and gradient-echo line-scanning (red line). 

 
 

Fig.5: (a) z-scores for SE-EPI slice 

acquisition, (b) GE-EPI slice 

acquisition (c) SE LSD image 

acquisition and (d) GE LSD image. 

Spatial resolution is 1.5mm isotropic. 

Fig.4: (a) Beta values for 1 SELINE acquisition, (b) 1 

GELINE acquisition, (c) 4 runs average SELINE acquisition 

and (d) 2 runs average  GELINE acquisition, overlaid on the 

acquired slices, in the same position as the line. Notice the 

different scaling for the four panels, and that (a,b) and (c,d) 

are 2 different representative participants.  
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Synopsis: Liver MRI could benefit from the increased SNR at 7T but suffers from severe flip angle inhomogeneity. In this work, eight-channel parallel transmission is used for flip 

angle shimming, comparing circularly polarized transmission and phase shimming with a kt-points pulse. Fourier phase-encoded DREAM is used for artifact-free B1+ mapping. With 

kt-points, the nominal flip angle of 8˚ could be achieved with homogeneous signal over the entire liver, while phase shimming only delivers a flip angle of approximately 4˚ with less 

homogeneity. Future work is directed towards use of universal slab-selective kt-points pulses to make 7T liver MRI clinically feasible. 

 

Introduction: Liver MRI could benefit from the increased SNR at 7T. However, the B1+ wavelength decreases to abdominal dimensions at this field strength, causing flip angle (FA) 

inhomogeneity when using simple RF pulses in circularly polarized (CP) transmission. In this work, we use multi-channel parallel transmission for whole-liver FA homogenization 

comparing kt-points1 and phase shimming. This necessitates artifact-free B1+ mapping, which was done using Fourier phase-encoded (FPE) DREAM2,3. 

 

Methods: Eight healthy volunteers were scanned with a 7T Philips Achieva scanner (Philips, Best, The Netherlands) using an eight-channel Tx/Rx fractionated dipole antenna body 

array4 (MRCoils, The Netherlands, Figure 1c). For FPE-DREAM B1+ mapping, multiple B1+ measurements (‘modes’) are acquired with all channels emitting with continuously 

varying phase between modes according to exp (
2𝜋𝑖(𝑚−1)𝑐

𝑀
), where m and c are the mode and channel number respectively and M is the total number of modes. In case M is higher than 

the number of channels, a weighting function is used to suppress unreliable measurements at low SNR from the overdetermined inverse problem3. After acquiring all modes, single-

channel B1+ maps were calculated on-scanner which, together with a 2nd order B0-shimmed 3D-GRE, served as input for phase shimming and kt-points pulse calculation. To find the 

minimally necessary number of modes, a 35-year old male with a relatively high BMI of 28.4 was scanned with 8, 10, 13 and 16 modes. Figure 2a shows the eight-channel B1+ 

magnitudes and phases calculated using 13 modes and p=0.25, q=20 in the weighting function (eq. 9)3. Figure 2b shows single-channel B1+ magnitude maps calculated from these 

acquisitions. Based on these results, 13 modes were determined sufficient. Using those values, FA shimming was performed on seven volunteers (BMI 18.4-23.3, weight 50-78kg, age 

26-34 years, 3 males). In volunteer 1-5, 3D-GRE scans were acquired using CP (45˚ phase increments between channels), phase shimming (except for volunteer 1) and kt-points. 

Additionally, intra- and inter-session kt-points repetitions were performed in four volunteers. The shimming volume-of-interest (VOI) encompassed the whole liver (see exemplary 

VOI in Figure 2, volunteer 5, kt-points). For phase shimming, the eight transmit-channel phase offsets were individually adapted to minimize the RF standard-deviation/(mean)2 over 

the VOI, using the MRCodeTool toolbox (MRCode, The Netherlands). Kt-points pulses were calculated with five subpulses, max. blip strength = 33 mT/m, max. blip slew rate = 166 

mT/m/ms and a maximum excitation k-space extent of 1/6 cm-1. Channel RF amplitudes and phases and the 3D excitation k-space trajectory were calculated using an interleaved 

greedy-local optimization algorithm5 in a home-built MRCodeTool extension6 (Figure 1b). The kt-points pulses were non-selective, requiring large FOVs to cover the entire transmission 

volume of the antennae. All scans were acquired in a single breath-hold, as were all separate FPE-DREAM modes. Other scan settings are listed in Figure 1a. The scans were 

reconstructed offline using BART7 and MRecon (Gyrotools, Zurich, Switzerland) in MATLAB. Receive B1 inhomogeneity was reduced using ANTs’ N4BiasFieldCorrection8. 

Magnitude images and simulated FA distributions over the VOI were plotted to assess image quality. 

 

Results: Figure 3 shows magnitude images in three orientations for volunteers 1-5 using CP, phase shimming and kt-points. CP shows clear signal dropouts, which are removed using 

phase shimming and kt-points. The kt-points scans show an increased overall contrast over phase shimming and CP. These results match with the simulations. They show that with 

both phase shimming and kt-points, the lowest FAs in CP can be increased, eliminating signal dropouts. Kt-points is able to deliver the nominal FA of 8˚ with a smaller FA range, while 

phase shimming only reaches a mean of ~4˚. The same behavior is seen in all five volunteers. Figure 4 shows good intra- and inter-session repeatability for volunteer 5. In volunteers 

2 and 6, one of the scans showed signal dropouts, despite promising simulation results. Volunteer 7 reported breath-hold difficulties and showed varying B1 patterns. 

 

Discussion: With FPE-DREAM, a homogeneous small-flip-angle whole-liver GRE can be acquired at 7T using kt-points pulses. With phase shimming, signal dropouts could be 

removed but with roughly half the nominal flip angle over the VOI. Occasionally, kt-points acquisitions give residual signal dropouts as shown in Figure 4. From volunteers 2 and 6 it 

follows that repeated acquisitions led to successful shimming, pointing at motion or inconsistent breath-holds as a possible cause. This would also explain signal dropouts in volunteer 

7. The BMI values of volunteers in this study were quite low. However, Figure 2a shows that artifact-free B1+ maps and good simulation results could also be achieved on a volunteer 

with a higher BMI, which is promising for successful application of kt-points. This will be subject of future research, as will be the application of universal pulses9 to avoid the time-

consuming B1+ calibration phase. Finally, we intend to make the kt-points pulses slab-selective to enable smaller FOVs which, in combination with undersampling techniques like 

SENSE or CS10, could increase spatial resolution. 

 

Conclusion: With FPE-DREAM, we could acquire a homogeneous small-flip-angle whole-liver GRE at 7T using kt-points, with highly increased homogeneity and mean FA compared 

to phase shimming and CP. 
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 Figure 2: FPE-DREAM B1+ mapping in a volunteer with high BMI. a) Eight-channel B1+ amplitude and                          

phase maps acquired using 13 modes (left) and corresponding whole-liver FA distribution simulations 

(right). The B1+ maps show no severe artifacts and the simulations show high homogeneity around the 

nominal FA for kt-points. b) Single-channel B1+ magnitude maps calculated from 8, 10, 13 and 16 modes. 

Maps calculated from 8 modes show artifacts (red arrows) that are removed when using >10 modes. 

 

 

 

 

 

 

Figure 1: a) Scan parameters for B0 mapping, B1+ mapping and the  

scans using CP, phase shimming and kt-points. For scans utilizing  

kt-points, the echo time was defined as the time between the echo and  

the middle of the combination of sub-pulses. b) An exemplary  

(volunteer 2) kt-point pulse trajectory (gradient blip diagrams) and pulse  

amplitudes and phases. c) The eight-channel fractionated dipole antenna  

body array used for parallel transmission. 

 

Figure 4: Robustness assessment. Magnitude images in three orientations  

(left) and simulations (right) of intra- and intersession kt-points  

repeatability tests in four volunteers. Volunteer 5 shows good  

repeatability in achieving whole-liver homogeneous FA. Volunteers 2, 6  

and 7 show the occurrence of residual signal dropouts despite promising  

simulation results. Note that intra-session repetitions do not involve  

calculation of a new kt-points pulse and hence no separate simulation  

result. 

 

Figure 3: Magnitude images in three orientations  

for volunteers 1-5 using CP, phase shimming  

and kt-points (left). Slices are centered on the  

most pronounced signal dropout area in CP near  

the inferior vena cava. The clear signal dropouts  

in CP are removed using phase shimming and  

kt-points. Kt-points shows increased contrast  

over phase shimming and CP which was  

expected from the simulations (right). An  

exemplary whole-liver VOI used in pulse  

calculation is drawn in red (volunteer 5,  

kt-points). 
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Synopsis: Inhomogeneities across large FOVs are problematic at ultra-high field. We propose a software-based TIAMO implementation to enable similar flip angles across the body without hardware 

interference on the 7T MR scanner. Using an interleaved and complementary CP+/CP2+ excitation scheme, we acquired water-selective and lipid-selective 3D GRE data at high resolution demonstrating 

homogeneous signal distribution across the pelvis and lower abdomen. 

 

INTRODUCTION 

Ultra-high field MRI offers high SNR and is therefore an excellent candidate for imaging small anatomical structures such as pelvic lymph nodes (LN) inside the body, which in combination with USPIO 

nanoparticles can aid in N-staging different types of cancer. [1] A major challenge is the decreased RF wavelength at 7T causing signal dropouts. This can in part be compensated by using RF shimming 

depending on the number of independent RF transmit channels. However, homogeneous RF shimming over very large field of views (FOV) remains challenging. In the past, the time interleaved acquisition 

of modes (TIAMO) [2] technique has been proposed to overcome the (in-)homogeneities and enabled large FOV-imaging in the body using an 8-channel parallel transmit system at ultra-high field. 

TIAMO uses two complementary RF shims in an interleaved fashion to improve overall transmit homogeneity with two complementary excitations reaching similar flip angles across the body. [3] 

The previous major drawback of this technique was its implementation on designated external RF hardware connected to the MR scanner, which would now interfere with warranty and maintenance issues 

from the MR system vendor on most recent 7T MR scanners. 

In this abstract, we propose a solely software based TIAMO approach which enables high resolution and large FOV imaging at ultra-high field overcoming the mentioned inhomogeneities in the same way 

as the previously used hardware-based TIAMO solution. As a proof-of-concept, we show water-selective and lipid-selective 7T 3D GRE images of the pelvis. 

METHODS 

TIAMO was implemented into a standard pTx-capable 3D GRE sequence by modifying the phases of the individual channels of the excitation pulse in the preparation section of the sequence. Two different 

RF pulses were used. The first pulse was transmitting in CP+ mode for the individual 8 channels, the second pulse used the complementary CP2+ mode. Within the sequence, the two RF pulses were played 

out in an interleaved fashion using two average settings. Images were reconstructed using the 16 “virtual” TIAMO receive elements. [3] 

Data were acquired from a healthy 47-year old male volunteer after informed consent on a 7T whole body system (Magnetom Terra, Siemens Healthcare GmbH, Germany) running on software version 

VE12U with a 8Tx/32Rx body-array coil [4]. 

After a localizer and standard B0 shimming, the high resolution protocol could be run without additional adjustments, consisting of two scans: 
1. A water excitation scan with a 970 μs block pulse with transmitter frequency centered on the water resonance with the following parameters: 256 coronal partitions, 0.68 mm isotropic resolution, 

384x384 matrix, 6/8 partial Fourier (PF) in phase/slice direction, BW 500 Hz/px, PAT 6, TR/TA = 16 ms/9:30 min, 5 gradient echoes with TE(1-5)=2.47/4.79/7.11/9.43/11.75 ms. 

2. A lipid-selective excitation scan with the 970 μs block pulse transmitter frequency centered at the main lipid frequency. Parameters: 256 coronal partitions, 0.68 mm isotropic resolution, 384x384 matrix, 
7/8 PF phase/slice, BW 500 Hz/px, PAT 3, TE/TR/TA = 2.48 ms/5.5 ms/7:04 min. 

For water-selective excitation, the zero-crossing of the frequency profile of the RF pulse would coincide with the lipid resonance frequency resulting in only water excitation (for the lipid-selective 
acquisition vice-versa). [5] The signal decay of the multi-gradient echo acquisition was used to calculate any computed echo time image set (example at cTE = 3 ms), an R2* relaxation rate image and an 

image set with the root-sum-of-squares addition of all signals together. 

RESULTS 

The 3D water-selective mGRE acquisition provided proper water excitation in the center of the body (Fig. 1). At the central coronal partition, only water is excited as B0 homogeneity is sufficient. Even 

though the TIAMO shims are not optimized to the volunteer (basic CP+/CP2+ was used), there were no signal dropouts because of missing excitation throughout the large FOV. Without the use of bowel 

relaxant, intestinal motion causes blur and artefacts. At superficial anterior and posterior parts of the volunteer, lipid excitation is visible caused by B0 inhomogeneity. 

Observing the same slices for the short TE lipid-selective GRE acquisition it appeared that lipid excitation was more difficult as water had not completely been suppressed (Fig. 2). Contrast between water 

and lipids is present, although inhomogeneous over the large FOV. Subcutaneous and visceral lipid tissue is very bright and even some lipid signal is visible within the bones. 

DISCUSSION AND CONCLUSION 

High resolution large FOV images with a reasonably homogeneous signal distribution and high SNR were obtained in the pelvis for lipid- and water-selective acquisitions using a software-based TIAMO 

implementation. In this work, we used the standard CP+ /CP2+ shim modes, but the flexibility of the software implementation allows to easily incorporate any pair of (universal complementary) shim settings 
into the sequence. Room for improvement is in better B0-shimming and in estimating the attained flip angle with the two excitations with different B1 shims settings [6]. The concept can also be transferred 

to other sequences for general use. Furthermore, the software-based approach enables the possibility to easily and independently distribute the TIAMO technique to different sites and MR scanners which 

was not possible with the previous hardware solution. 
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Figure 1.  

Figure 1: A coronal (left) and different axial views (right) of the 3D water-selective GRE acquisition reconstructed at cTE = 3 ms with good B0 homogeneity in the central partition and some remaining 

lipid signal in the anterior and posterior parts of the body of the volunteer. 

 

 

Figure 2.  

Figure 2: A coronal (left) and different axial views (right) of the 3D lipid-selective GRE acquisition. The water signal is not completely suppressed. Subcutaneous and visceral lipid tissue is very bright and 

even some lipid signal is visible in the bones. 
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Synopsis: Myelin water imaging using multi-compartment relaxometry (MCR-MWI) improves the GRE-MWI robustness and accuracy but suffered from slow processing speed. In this study, we 
incorporate both supervised and self-supervised machine learning for fast MCR-MWI that is generalisable to a wide range of acquisition parameters without the need to re-train the network. We 

demonstrate its application on single compartment fitting and MCR-MWI. Results show that the proposed method can produce comparable high SNR results with a 62-fold shorter processing time. 

 

Introduction: Gradient echo myelin water imaging (GRE-MWI) is a promising myelination measurement method, yet highly ill-conditioned1-3. A multi-compartment relaxometry method for MWI (MCR-

MWI)4 incorporating variable flip angle (VFA), multi-echo GRE acquisition was recently introduced to overcome GRE-MWI limitations: accounting for distinct free water (IEW) and myelin water (MW) 
signal saturation, and ensuring fitting convergence. In MCR-MWI, the steady-state signal is modelled by the extended phase graph with exchange (EPG-X) framework5 to account for inter-compartmental 

magnetisation exchange. However, using EPG-X with non-linear least squares (NLS) fitting is computationally expensive. Without parallelisation, one 1.5-mm isotropic resolution brain volume requires 

~350 computation hours.  

 

Using fully-connected artificial neural networks (FC-ANN) to speed-up parameter mapping was previously implemented for MWI6-7. However, these trained networks are protocol-specific and are not 

generalisable to new acquisition parameters (e.g., echo times). This would be even more critical with MCR-MWI where repetition time (TR), and (number of different) flip angles (α) have to be considered. 

 

Self-supervised learning has been successful on rapid parameter mapping without the necessity of training data8,9. We propose a semi-supervised learning method for MCR-MWI. An FC-ANN is trained as 

a fast EPG-X simulator to generate the IEW and MW steady-state signal. The trained FC-ANN is then embedded in the MCR-MWI model in the self-supervised network for parameter mapping10, utilising 

its computational efficiency to perform optimisation for a large number of voxels without extra training data, making it applicable across a variety of acquisition settings. 

 

Methods  

FC-ANN for EPG-X 

The FC-ANN6 architecture for EPG-X is described in Fig.1. The network takes six inputs: myelin sheath volume fraction (fM), T1,IEW, T1,M, exchange rate (kIEWM), α, and TR, and returns the magnitude 

steady-state IEW and MW signals that match the EPG-X simulations. 

 

Training data was generated from 1.5x106 random parameter sets (𝜽) with the 4 parameters described in Fig.1b. Training was performed using Adam optimiser with 100 epochs. The training loss was 

defined as a sum of three mean squared errors (MSE): 

𝑙𝑜𝑠𝑠 = 𝑀𝑆𝐸𝜃,𝛼 +𝑀𝑆𝐸𝜃,1−90 + 𝜆𝑀𝑆𝐸𝑑𝑆𝜃/𝑑𝛼 

corresponding to the MSE between the FC-ANN predictions and the EPG-X signal (1) given 𝜽 at a single α (𝑀𝑆𝐸𝜃,𝛼) and (2) for all 90 flip angles (𝑀𝑆𝐸𝜃,1−90), and (3) the first derivative of the signal to 

flip angle (𝑀𝑆𝐸𝑑𝑆𝜃/𝑑𝛼).  

 

Self-supervised learning for parameter mapping 

To perform parameter mapping, we deployed a simplistic physics-informed self-learning approach10 (Fig.2). The network is initialised with random (and/or constant) values for the MR parameters (which 

are the network parameters to be optimised) and the acquired MR data is given as input. During the learning process, signal is simulated given the parameters and the signal model (Fig.2b,c), and the MR 

parameters are updated using an Adam optimiser based on a loss function of the MSE between simulated and actual signal. 

 

Both networks were created and trained using the Deep Learning Toolbox in Matlab R2021b (Natwick, US) with an NVIDIA Tesla P100 GPU (Santa Clara, CA). 

 

In vivo imaging 

Data acquisition was performed at 3T (Siemens, Erlangen) on 2 healthy volunteers. A monopolar 3D ME GRE sequence was used to acquire VFA data using two distinct sets of protocols  

1) TR/TE1/ΔTE/nTE=38/2.2/3.07ms/12, TA=2.8min/α; 

2) TR/TE1/ΔTE/nTE =55/2.68/3.95ms/13, TA=4min/α, 

res=1.5mm iso., α=[5,10,20,50,70]°, RCAIPI=5. B1 map was acquired to correct the B1 field inhomogeneity. The complex data of all different α datasets and the B1 map were co-registered before further 

processing. 

 

Single Compartment Relaxometry  

As a reference standard fast processing pipeline, R2* was estimated on each dataset using trapezoidal integration11, followed by DESPOT1 R1 mapping on the extrapolated S0 images12. Mean R2* map was 

computed across flip angles. The self-supervised learning method shown in (Fig.2a,b) was used to demonstrate the network ability to perform simple parameter mapping. 

 

Multi-Compartment Relaxometry  

MWF maps were obtained as in 4 using an NLS fitting on a voxel-wise basis and compared to the self-supervised learning method described in (Fig.2a,c), processing ~12000 voxels simultaneously per 

batch. 

 

The resulting maps between standard and self-supervised data were compared. 

 

Results and Discussion: Fig.3 shows that the FC-ANN can generate the EPG-X signal for a variety of protocols and tissue parameters with the maximum percentage difference being below 3%. 

 

Fig. 4 shows that the M0, R1* and R2* maps derived from self-learning and standard relaxometry deliver comparable results, but the normalised MSE between the simulated and measured data is lower with 

the self-supervised method benefiting from its explicit MSE cost function. 

 

Fig. 5 shows that the semi-supervised approach results in comparable MWF maps to voxel-wise fitting but 62-fold faster. Banding artefacts are observed in the most SNR sensitive measurements (R*2,MW 
and kIEWM) in regions corresponding to different processing batches. Although no explicit spatial regularization was used, the maps obtained are less prone to noise enhancement which is attributed to the 

learning gradients being computed over a large number of pixels.  

 

Conclusions: We present a semi-supervised framework for MCR-MWI using an FC-ANN that is flexible to protocol settings (TR, TE and α) without re-training. Future work will explore the impact of 

learning rates associated with the various maps and introduce a 3DTV loss function to allow higher resolution MCR-MWI protocols. This framework can be adapted to complex non-linear fitting 

approaches as quantitative CEST or MT. 

 

References: 1. Nam, et. al., Neuroimage 2015;116:214–221. 2. Alonso-Ortiz, et. al., Neuroimage 2018;182:370–378. 3. Lee et. al., NMR in Biomedicine 2016;30:e3513. 4. Chan et. al., Neuroimage 

2020;221:117159. 5. Malik et. al., MRM 2017;3:125. 6. Lee et. al., MRM 2019;31:673. 7. Jung et. al. MRM 2021;85:380–389. 8. Kang, et. al. MRM 2021;85:2040–2054. 9. So at. al., In. Proc. ISMRM 30, 

Virtual meeting 2021;3027. 10. Kim at. al., Workshop on MRI Acquisition & Reconstruction, Virtual meeting 2021. 11. Gil et. al., NMR in Biomedicine 2016; 29:1780–1790. 12. Deoni et. al., MRM 
2003;49:515–526.  
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Fig. 2: (a) Illustration of the self-supervised method for parameter mapping. This network uses a signal 

model to generate simulated data that minimises the MSE to the measured data, and MR parameters 

are updated until the maximum number of iterations is reached. This method can be adopted for 
various parameter mapping methods by incorporating the corresponding signal model. We 

demonstrated its applications on (b) single compartment mapping and (c) MCR-MWI incorporating the 

network in Fig.1. Contrary to voxel-wise fitting, the proposed method operates on volumetric inputs. ↑ 

 

Fig. 5: MCR-MWI results from voxel-wise fitting and semi-supervised learning on 2 subjects 

(only 1 protocol is shown). MWF maps from both methods share similar contrast in white 
matter. Significantly different R1,IEW and kIEWM are observed with semi-supervised learning, and 

its R1,IEW looks closer to the R1 in Fig.4. The compartmental R2* show higher SNR with the 

proposed method, which likely benefits from having more data in the optimisation that makes the 
results less error-prone. Banding artefacts in R2,MW* & kIEWM are related to different processing 

batches. ↑ 

Fig. 3: Plots of the steady-state signal (at TE=0) using the standard Bloch equations (dot), EPG-X 
(dashed) and FC-ANN (solid) as a function of flip angle. The columns show the simulations of 3 

samples in the validation set with different TR and tissue properties. The top row shows the signal of 

free water, the middle row shows the signal of the myelin water. The bottom row shows the percentage 
difference of the FC-ANN in respect to EPG-X for the free water (blue) and myelin water (red) 

respectively. In most cases, the percentage difference from FC-ANN output is below 3%. ↑  

Fig. 4: Single compartment mapping using standard method (1st & 3rd rows) and self-supervised 

learning (2nd & 4th rows). Unsurprisingly, both methods produce maps with very similar contrast 
since the signal model is not ill-conditioned. Overall, lower normalised MSE can be observed in 

self-supervised results, particularly in CSF. In a simple problem likes this, the self-supervised 

method does not show the advantage of computational time. ← 

Fig. 1: a) The EPG-X steady-state FC-ANN is preceded by a feature extraction step to derive 10 input 

features that are both normalized to [0,1] and are related with different terms of the Bloch-McConnell 
equations. The network core comprises 7 hidden fully-connected layers and a leaky RELU (scale 

factor=0.01) function. The network parameters are trained with a hybrid strategy of increasing batch 

size and reducing learning rate as a function of the training iterations to ensure convergence. b) 

Illustration of the parameters and their ranges to generate training and validation data. ↑ 
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Synopsis: To optimally use our novel head&neck HT applicator, MR thermometry (MRT) needs to become more reliable and it's stability needs to be demonstrated 

in vivo. We compared the MRT performance across different multi-echo gradient echo sequences in phantom and 10 volunteers on a 1.5T MR scanner (Signa 

MR450, GE). The sequences investigated were: DEGRE(2D-2echo), ME-FGRE(2D-11echo) and IDEAL IQ(3D-11echo). Regarding accuracy and stability, 

IDEAL IQ outperformed the other sequences, with values of 0.60°C and 0.75°C respectively. Hence, IDEAL IQ is most promising for MRT during HT 

applications. Probably, this is due to the design of the sequence and it’s 3D nature. 

Introduction: During hyperthermia therapy (HT), tissue temperature is increased towards 43°C to stimulate radio-, chemo- or immunotherapy. The HT effect is 

strongly temperature dependent so real-time monitoring is crucial for treatment quality. MR thermometry (MRT) is a promising tool to measure the temperature 

distribution during treatment non-invasively, but it’s not yet established in clinical routine. By using multi-channel receive coils instead of the single channel body 

coil, the SNR can be increased and consequently the thermometry is improved. This motivated the development of a novel MR-compatible head&neck HT 

applicator, integrating a multi-channel receive coil: the MRcollar1. In order to optimally use our device, we study the achievable PRFS based MRT performance 

using multi-echo gradient-echo sequences for their accuracy in a phantom and for their stability in volunteers. 

Methods: Figure 1 presents a flowchart of the method. We investigated: Double-Echo Gradient Echo (DEGRE: 2D, 2 echoes), Multi-Echo Fast Gradient Echo 

(ME-FGRE: 2D, 11 echoes), and a three point Dixon multi echo sequence (IDEAL IQ2: 3D, 11 echoes). All acquisitions were made using a 22-channel head&neck 

coil on a 1.5T MR scanner (Signa MR450, GE Healthcare). A phantom was imaged during cooling down from 50°C to 30°C, while MR compatible temperature 

probes continuously measured the true temperature. 10 healthy volunteers were imaged in a non-heated condition, where two scans of the brain were made with all 

sequences in interleaved fashion. To compensate displacements between the repeats, in-plane motion was compensated by rigid body image registration for all 

sequences. When displacement in the slice direction was >20% of the slice thickness for the 2D acquisitions (DEGRE + ME-FGRE), the scan was excluded. For 

each ME-FGRE and IDEAL IQ scan the off-resonance frequency and proton density water/fat maps were calculated by a multi-peak fitting tool3. A new automatic 

method to select the internal body fat was developed to correct for the B0 drift in the volunteer scans. Figure 2 shows an example of a selected fat mask, as well as 

the change of off-resonance maps before and after drift correction. When the fat mask contains too few voxels the linear fit is degenerate and hence the correction 

cannot be applied. Such slices were excluded. An important advantage of this method is that it needs no user input, as it uses the fat & water proton density maps 

from the multi-peak fitting tool. Additional constraints were added to improve the fat mask, such as correcting for water/fat swapped voxels. The temperature 

change from baseline was computed from the change in off-resonance frequency after drift correction. The ROI selected to evaluate the MRT in the brain of the 

volunteers was a fixed ellipse made to cover an area as large as possible to fit all slices in all volunteers (Figure 5). The accuracy of MRT in the phantom was 

calculated in a circular ROI (radius=12pixels) drawn around the probe-tip, as the average absolute difference between the probe measurement and MRT 

temperature. In-vivo stability was calculated as the mean absolute deviation from zero of the temperature change in the ROI.  

Results: Figure 3 shows an example of temperature maps that can be observed in the phantom whilst cooling down, the MRT accuracy for all sequences is 

presented in Figure 4. IDEAL IQ outperformed all other sequences with an accuracy of 0.60°C. The volunteer results are presented in Figure 5. All scans from one 

volunteer and one ME-FGRE scan series from another volunteer were excluded due to z-displacement. About 4-6 slices were excluded per sequence due to too few 

voxels in the fat mask. The benefit of our exclusion criteria for all sequences can be observed in Figure 5. After exclusion, IDEAL IQ achieves the best stability of 

0.75°C. The IDEAL IQ data was most robust concerning the fat mask selection, with only 5% of slices having to be excluded, compared to up 30% for other 

sequences. 

Discussion: With some volunteers, there was substantial motion in the z-direction. Since the 2D acquisitions had a slice gap, 3D image registration was not 

possible. We expect that exclusion of data due to prominent motion is not an issue during HT treatments, as such motion will be restricted by the water bolus of the 

HT applicator. In the future we seek to improve our automatic fat selection further so that less slices need to be excluded because of non-reliable drift correction 

calculation. We notice that this is most prominent in the slices at the edge of the acquisition. In order to still get a reliable drift correction in the slices of interest, a 

slightly larger volume could be acquired. IDEAL already includes 4 extra slices on each side of the FOV, which is one possible explanation for the superior MRT 

performance. Additionally, the 3D multi-echo sequence has a higher SNR than the other 2D sequences investigated. 

Conclusion: To conclude, IDEAL IQ is deemed the most promising sequence for HT applications for our MRcollar. Its better accuracy and stability in vivo enable 

reliable detection of small temperature increases during the relatively long treatment times. Since IDEAL IQ is already commercially available it can be easily 

implemented in the HT acquisition protocol. 
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Figure 1. Flow chart showing the post processing and 

exclusion steps for the volunteer data (left) and phantom 

data (right). 

 

 

 

Figure 5. Stability achieved for all sequences in the volunteer experiments, 

including all scans and excluding scans with too much motion in slice 

direction and too little fat voxels selected for B0 drift calculation. Stability 
is measured as the mean in the ROI of the absolute deviation from zero in the  

temperature change maps. The ROI selected is shown in the top right corner. 
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Figure 2. Example of fat mask selected for B0 drift correction with our automatic selection using proton density maps of fat and water. 

From left to right: a magnitude IDEAL IQ image (volunteer 10, slice 1, echo 1, TP1) underneath the final fat mask in red; change in off-

resonance map before B0 drift correction; change in off-resonance map after B0 drift correction. Both changes in off-resonance 

frequency are plotted on the same scale, the importance of the B0 correction for the true change in temperature becomes apparent. 

 

Figure 3. MRT temperature change maps 

obtained with DE-GRE visualizing the phantom 
cooling down ~20°C over time. The center vial 

contains water and was used for evaluation. At 

the top of the phantom an air bubble is creating 

artefacts. 

Figure 4. Accuracy achieved for all sequences in the phantom experiments. 
Accuracy values are obtained by taking the average of the absolute 

difference between MRT and temperature probe measurement (a low 

accuracy in this case means a smaller deviation from the ‘true’ temperature 

i.e. a more accurate description of the result). 
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Synopsis: This work announces the initial design of the first Electrical Properties (EPs) reconstruction challenge and opens up the call for ideas to finalize its implementation and to 

define the organizing committee members. Several EPs reconstruction methods have been presented in the last decade. However, as emerged from the last EPs workshop (IMEP-

Utrecht’19), testing on common data has not been performed yet, nor data are publicly available. The scope of this challenge is therefore to benchmark current reconstructions on the 

same data. These data will also be made available to favor benchmarking of new methods in the future. 

Purpose: MR-Electrical Properties Tomography (MR-EPT) aims at reconstructing tissue electrical properties (EPs), (mostly) conductivity and permittivity, at megahertz frequencies 

from non-invasive MRI measurements. In the last decade, several reconstruction methods have been presented, however the reported EPs values show substantial differences[1,2,3]. 

This was recognized during the last EPT workshop (IMEP-Utrecht-2019)[4], demonstrating the need of a common dataset to benchmark current reconstruction algorithms and future 

physics/deep-learning based reconstruction methods. For this purpose, the Utrecht group set out to provide such dataset (simulated and measured phantom/in-vivo data) fulfilling the 

community-shared key requirements: use of a clinical MRI system (3 T), standard MRI sequences and clinical coil setup to ease future clinical implementation. 

Additionally, during that workshop it was recognized the need to objectively compare the current reconstruction methods to understand their strengths and weaknesses in a systematic 

manner. In consultation with the future EMTP workshop organizers (Lucca-2022), it seems that launching the first MR-EPT reconstruction challenge in the context of this workshop 

would help reaching these overarching goals.  

Here, we therefore present the initial design of the first MR-EPT reconstruction challenge. We also invite the EPT community to provide suggestions to be discussed during the 

upcoming ISMRM Meeting (London-2022) through the call for ideas and to candidate for the organizing committee (see below). 

Methods:  

Challenge Phases: Following the lessons learned in the QSM reconstruction challenges[5,6], the EPT reconstruction challenge will comprise of three independent phases (see Fig.1 for 

description, data provided, and evaluation strategy of each phase). 

Timeline: We foresee that the challenge can be launched in the context of the EMTP workshop (Lucca-2022) and results can be presented in the following ISMRM Meeting. 

Dataset: As for the QSM challenges, we aim at providing different type of data for brain EPs reconstructions at 3 T: 

1) In-silico brain data (noiseless and with noise) from Sim4Life simulations:  

a. B1
+ magnitude, phase and receive phase (for transceive phase-based reconstructions), source fields 

b. Ground-truth (GT) EPs maps 

2) MRI cylindrical phantom data: 

a. B1
+ magnitude and transceive phase 

b. GT-EPs maps  

c. MRI magnitude data (e.g. T1-weighted images) 

3) MRI 3D-printed brain-like phantom data: 

a. B1
+ magnitude and transceive phase 

b. GT-EPs maps 

c. MRI magnitude data (e.g. T1-weighted images) 

4) MRI in-vivo brain data (3 healthy volunteers): 

a. B1
+ magnitude and transceive phase 

b. MRI magnitude data (e.g. T1-weighted images) 

Data Management: As for the QSM challenge 2.0, data evaluation will be implemented to allow a fully blinded analysis. Only two committee members will have access to the 

identifying information of the participants. Upon submission of the reconstruction results, participants will also be asked to answer a questionnaire similar to the one presented in the 

QSM challenge 2.0 providing further information on the type of reconstruction performed and used data (e.g. phase-only).  

Metrics: As learned in the QSM challenges, we will not only implement quantitative, global error metrics (e.g. NRMSE). In addition, region specific analysis and visual rating will 

also be considered.  Such rating will provide a quality assessment of the reconstructed EPs maps, lack of reconstruction artifacts (boundary errors / blurring), presence of wrong 

morphological structures.  

Open Science: We also strive for open science. Therefore, we will aim at making our database publicly available (downloadable after registration and user verification). Also, 

analogously to the QSM challenge 2.0, we will encourage all the participating groups to make available the codes and/or to report about their willingness to provide them upon 

request. 

Results: Quantitative and qualitative analyses (Fig.1) will be performed by the committee members and results will ideally be presented at the ISMRM Annual Meeting 2023. 

Decisions on the final design and metrics will be taken by the organizing committee after reviewing the input from the EPT community (Fig.2). 

Discussion: Through this challenge, we expect to achieve the following major goals: 

1) Provide the first dataset for MR-EPT reconstructions fulfilling the main requirement of: using a clinical MRI system (3 T), standard MRI sequences and clinical coil 

setup to ease future clinical implementation 

2) Evaluate the state-of-the-art of EPT reconstructions methods using the same test data 

3) Allow benchmarking of future EPT reconstruction methods 

At the current stage, we are looking forward to hearing possible suggestions from the EPT community (e.g. MRI sequences to be used) as well as understanding the overall interest in 

participating in such a challenge. For this purpose, we invite the readers interested in participating to such a challenge to fill in the following survey (Google form: 

https://forms.gle/XJV2C65b8wrUGpUg7  – call for ideas, Fig.2). We aim at discussing the collected ideas during the upcoming ISMRM Annual Meeting (London-2022). 

Also, if you would like to be part of the organizing committee, we kindly invite you to candidate via the same form. 

Conclusion: This work presents the initial design of the first MR-EPT reconstruction challenge and opens up the call for ideas to finalize its implementation and to define the 

organizing committee members. 

References:  
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3) Mandija S, Petrov PI, Vink JJT, Neggers SFW, van den Berg CAT, ‘Brain tissue conductivity measurements with MR-Electrical Properties Tomography: An in vivo study.’ Brain 

Topography 2021; 34: 56-63 
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5) Milovic C, Tejos C, et al, ‘The 2016 QSM Challenge: Lessons learned and considerations for a future challenge design.’ Magn Res Med 2020; 84: 1624-1637 

6) QSM Challenge 2.0 Organizing Committee, et al, ‘QSM reconstruction challenge 2.0: Design and report of results.’ Magn Res Med 2021; 86: 1241-1255 
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Fig.1: Description of the 3 phases of the challenge. GT-EPs = ground-truth electrical 

properties. 
Fig.2: List of questions present in the Google form to collect suggestions and to candidate 

for the organizing committee. 
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Synopsis: This work presents a semi-realistic and reusable 3D printed brain phantom to benchmark MR-Electrical-Properties-Tomography reconstruction methods. We show that the 

hollow compartments of this phantom can be refilled multiple times with different water-based solutions of known electrical properties, which are otherwise not available from in-

vivo measurements. Additionally, these brain phantoms can be used inside electromagnetic simulation software, allowing for MR-EPT reconstructions in controlled, simulation 

settings. In this way, a database comprising of simulated and measured data using these brain models and corresponding 3D printed phantoms will be generated and shared for the 

first MR-EPT reconstruction challenge. 

Purpose: In MR-based electrical properties tomography (EPT), electrical properties (EPs, conductivity σ and relative permittivity εr) are derived from non-invasive MR 

measurements. Several reconstruction methods have been presented, however the reported in-vivo results often lack agreement1,2. Benchmarking of in-vivo EPs reconstructions is 

hampered by the lack of knowledge of ground-truth (GT) EPs values. Therefore, these reconstruction methods are often evaluated on phantom measurements, where GT-EPs values 

are available. However, by using simplified phantoms (e.g. spheres/cylinders), the validity of certain assumptions made by the reconstruction approaches (e.g. symmetry) and the 

impact of realistic tissue structures (e.g. tissue boundaries) may not be thoroughly studied3,4. 

In this work, we present the first 3D printed, brain-like, MR compatible phantom, in which white/gray matter and cerebrospinal fluid structures can be filled independently with 

liquids of known EPs. This will allow benchmarking of MR-EPT reconstruction algorithms in a more realistic scenario. Additionally, we show that the 3D printed, brain-like 

geometry can be easily imported in electromagnetic (EM) simulation software for EPT reconstructions on in-silico data. This allows direct comparison between reconstruction 

performance in ideal (simulations) and realistic (MR) settings. All the measured and simulated data that will be generated with these phantoms/models will be used to create a 

database that will be shared with the EPT community to favor benchmarking of EPT reconstruction algorithms. 

Materials and Methods: The overall workflow describing the procedure to go from brain MRI data to a 3D printed brain-like phantom, and the creation of the MR-EPT database 

comprising of MRI measurements and EM simulations is shown in Fig.1. The brain data was taken from the BigBrain dataset5 (voxels labeled as white matter (WM), gray matter 

(GM) and cerebrospinal fluid (CSF)). Using 3DSlicer6, the segmented model was modified (smoothing, expansion, island filling and logical operations) to create a model with 

smooth surfaces and 4 compartments: WM, GM, CSF, and ventricles. The obtained 3D model was used for both EM simulations and 3D printing. 

Structural cylinders were added to the surface model to prevent structural breakdown (Fig.2). To make all compartments fillable, various pipes and holes were added. The 3D model 

was imported in Cura7 for slicing and conversion to GCode and printed via fuse deposition modelling on an Ultimaker S3 3D printer (layer height 0.2mm). Surfaces were printed with 

polylactic acid (PLA), while a water-soluble support material polyvynil alcohol (PVA) was used to enable printing of overhanging structures. Printing time was about 2 days, after 

which the phantom was put in a water-bath for 2 days to wash out the support material. The compartments of the phantom were then filled with water/gelatin-based solutions (Fig.38). 

MRI measurements were performed on a clinical 3 T MRI system (Fig.3). The original brain model and the simplified one (used for printing) were also used for EM simulations in 

Sim4Life9 (Fig.4: simulation setup and EM fields). Helmholtz-EPT reconstructions were performed on both measured and simulated data. 

Results and Discussion: From the contrast difference in the T1-weighted images of Fig.3, it can be seen that the compartments of the phantom can be individually filled, washed, and 

refilled. This allows the creation of a database of measured data using the same 3D printed phantom model but different, known, EPs values. This can be exploited for training deep-

learning methods for EPT reconstructions (otherwise difficult for in-vivo data due to lack of GT-EPs knowledge10). For illustration, B1
+ magnitude and transceive phase maps 

obtained from MRI measurements using this 3D printed phantom are shown. 

From the performed measurements, we did not observe any imaging artifact created by the phantom or the materials used for its construction. A few bubbles were left within the 

gelatin, which may be avoided by slower phantom filling. A small leakage from the phantom surface was also observed. This issue may be overcome by increasing the printing 

resolution, temperature and thickness of the outer layer. 

In Fig.4, simulated EM fields illustrate that the model simplification does not have a major effect on the resulting fields.  

In Fig.5, conductivity maps reconstructed from simulated (controlled settings) and measured (realistic settings) data using the same phantom are shown, demonstrating similar quality 

and, therefore, the feasibility of using a 3D printed brain phantom for benchmarking EPT reconstructions. 

By using the same phantom model, EPT reconstructions from EM simulations and MR measurements can be directly compared. Also, measurement related reconstruction issues of 

different MR-EPT methods can be accurately characterized. Furthermore, this allows testing the (noise) robustness and generalizability of emerging deep-learning EPT methods 

(trained on simulated data) with realistic MR measurements on brain models with known GT-EPs values (otherwise not available for in-vivo data). 

The measured and simulated data generated with this type of phantoms will be shared with the EPT community allowing future reproducibility and standardization studies, together 

with the first MR-EPT reconstruction challenge. 

Conclusion: A reusable, 3D printed, brain-like, MR compatible phantom is presented for the first time for benchmarking MR-EPT reconstructions from MRI measurements as this 

allows knowledge of GT-EPs. All the measured/simulated data obtained from such brain models/3D printed phantoms will be shared with the MR-EPT community in the context of 

the first MR-EPT challenge. 
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Fig.1: Workflow describing the MR-EPT database creation starting from MRI brain data. The 

database comprises of simulated data on full/simplified brain models as well as measured data from 

3D printed brain models (simplified models). Finally, in-vivo brain data will also be part of the 

database. This database will be made available and will be instrumental for the first MR-EPT 

reconstruction challenge. 

 

Fig.2: Workflow depicting the 3D printing process from a 3D surface model. In the printing 

procedure, two components were used, one of which (used as support) was washed out by 

submerging the phantom in water for 2 days. The final model also shows few small pipes 

exiting the brain. These were used for filling, washing and refilling of the phantom (see 

Fig.3). 

 

Fig.3: Left: Preparation of two brain phantoms with different water-based solutions (see table for 

used materials and concentrations). Middle: example MRI images of the two differently filled 

brain phantoms (different tissue contrast between the two models) and MRI/CT images of the 

first model. Right: example of acquired B1
+ magnitude and transceive phase maps from 3 T MRI 

measurements. These are used for conductivity reconstructions.  

 

Fig.4: Sim4Life simulations on the full/simplified brain models. Left: the birdcage coil 

model and the adopted brain models inserted in the Ella body model (VirtualFamily11). 

Middle: example of conductivity maps for the full/simplified brain models and adopted 

tissue conductivity values. Right: simulated B1
+ magnitude and transceive phase maps (used 

for conductivity reconstructions) for both brain models. Error maps showing the error 

introduced by the transceive phase assumption are also shown. 

 

Fig.5: Helmholtz-based 2D conductivity reconstructions from simulated data and MRI measurements. For these reconstructions, an in-plane 7x7 derivative kernel 

was used4. The ground-truth conductivity map and a T1-weighted image are also shown as a reference. Measurements setup and MR sequence parameters are 

reported in the figure (bottom right). Average reconstructed conductivity value for the WM in the region of interest (ROI) is shown (bottom left). 
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Synopsis:  Six volunteers were scanned two times on two different 3T scanners (GE, Philips) using the 3D-QALAS sequence. The intracranial and brain parenchymal 

volume and myelin content were determined and the brain segmented in cerebrospinal fluid and white and grey matter using synthetic MRI. Bland-Altman plots, 

Dice coefficient and coefficient of variation indicate that the test-retest variability is very small, but there is an inter-vendor bias for CSF, GM and WM. MyC, BPV 

and ICV have only a very limited inter-vendor bias. At least for GM and BPV, the expected inter-scanner variation, besides the bias, is below the clinically relevant 

threshold.  

Introduction: Measuring relaxometric properties in the brain has become possible due to a number of new sequences which were introduced, first in 2D 1,2, but now 

also in 3D such as the 3D-QALAS sequence 3. This relaxometry data can be used to segment the brain and create synthetic images. The increased resolution of the 

3D sequences results in less partial volume effect, significantly increasing the accuracy of the measured values and the possibility for clinically relevant applications. 

It is important to know the accuracy of these sequences, as well as the influence of the scanner, in order to correctly assess deviations from previous or normative 

values. To this end, a test-retest was done on volunteers in this research, on two different scanners, such that both inter- and intra-scanner variability could be 

determined. 

Methods: Six healthy volunteers (3 male, age range 28-69 year, average 47 years) were scanned twice using the 3D-QALAS sequence on two different 3T scanners 

(Philips Ingenia and GE Premier), for a total of four scans, each time with repositioning between scans and with a random order of the scans for each subject. 

Parameters were kept the same where possible. Common parameters of the scans were: axial scans, resolution: 1x1x1.2 mm³, FoV 25.6x25.6x16.3 cm³, TI=100ms, 

echo train length=150, flip angle=4°. GE specific settings were: TE=2.032ms, TR=5.372ms, bandwidth=390.6Hz/pixel, 48 channel head coil, acceleration 2.6 using 

hypersense, acquisition time = 6min 38s. Philips specific settings were TE=2.129ms, TR=4.710ms, bandwidth=431 Hz/pixel, 32 channel head coil, acceleration factor 

2 using CSense, acquisition time = 6min 57s.  

Segmentation in cerebrospinal fluid (CSF) and grey and white matter (GM, WM), and determination of myelin content (MyC), intracranial volume (ICV) and brain 

parenchymal volume (BPV) was done using SyMRI prototype version 21Q1 4,5 (SyntheticMR AB, Linköping, Sweden). Synthetic T1-weighted images with TE=5ms 

and TR=100ms were constructed and coregistered to a randomly chosen T1-weighted image using SPM12 6. The segmentation maps were warped along with their 

respective T1 images. Dice scores were then calculated between the binarized segmentation maps. 

The coefficient of variation (CV) was calculated for test-retest variability, using the two measurements per scanner per volunteer. For the inter-scanner variability the 

CV was calculated using the average of the two measurements per scanner as input values. 

Results: The Bland-Altman plots for the intra-scanner results are shown in figure 1. The bias is -1.38% for WM, 1.38% for GM, and <0.1% for the other segments. 

The limits of agreement (LA) are largest for CSF (-3.53% to 3.73%), WM (-4.58% to 1.83%),GM (-0.67% to 3.43%) and MyC (-3.31% to 3.23%). For BPV and ICV 

they are <1%. 

The inter-scanner Bland-Altman plots are shown in figure 2. For WM there is -8.60% difference on average, while this is 5.88% and -6.13% for GM and CSF 

respectively. For MyC the bias is -1.89%, BPV has -1.54%, and for the ICV it is -2.15%. The LA are smaller as in the test-retest results for WM, CSF, MyC, BPV 

and ICV but larger for GM.  

The Dice scores are shown in table 1 and indicate better agreement with the GE retest compared to the Philips measurements, except for MyC. The Dice score 

indicates good to excellent levels of agreement, with the lowest score in MyC. 

The CVs are shown in table 2. Both vendors score similarly in the test-retest comparisons, with the ICV and BPV masks being extremely similar, and MyC having 

CV<1% in all cases. For the inter-scanner results, the largest variability is observed for WM, followed by CSF, GM, ICV, MyC and BPV. 

Discussion: The Bland-Altman plots, CV and Dice similarity score all indicate that the intra-scanner variability is very low, yielding very similar volumetric results 

and segmented maps, with the CV being lower than the expected yearly GM and BPV atrophy in AD 7,8. These results are also in line with earlier findings at 1.5T 

9. The slight biases seen in the plots for WM and GM are likely statistical noise.  

The CV and Bland-Altman plots indicate an inter-vendor bias: using Philips, more GM is found, but less WM and CSF. For MyC, BPV and ICV the bias is not 

clinically relevant. The Dice scores from different scanners are slightly lower, except for MyC. These facts indicate that MyC might be a robust quantitative measure 

across scanners. If the bias is taken into account, both the standard deviations of the CV and the LA in the plots are within clinical limits 7,8. The lower Dice scores 

for the MyC segments are natural, due to its complexity 10. The reason for the bias will be investigated further, but previous work in phantoms found a slight inter-

vendor effect in the T1 estimations 11, used for the tissue segmentation. A possible improvement of the sequence would be prospective motion correction. 

Conclusion: The first inter-vendor results for 3D-QALAS in volunteers at 3T are presented. Our test-retest results show that 3D-QALAS reliably estimates WM, 

GM, CSF and MyC, in line with results at 1.5T. Despite a bias between the vendors for GM, WM and CSF, with up to 8.60% difference on average for WM, the 

standard deviations are within clinical limits. MyC, BPV and ICV are estimated reliably. 
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Figure 1: Bland-Altman plots showing the test-retest results, with different colours denoting different volunteers. The red line indicates the average difference (bias), the blue dotted line are at bias ± 1.96 x 
standard deviation. Diamonds indicate the GE measurements, circles are used for Philips. The biases are <1.5%, indicating excellent test-retest variability, with the 1.96 x standard deviation values for BPV 

and ICV being <1.0% and well under 5% for the other segments.   

 

Figure 2: Bland-Altman plots showing the results for the inter-vendor comparison, with each volunteer in a different colour. The red line indicates the average difference (bias), the blue dotted line are at bias 

± standard deviation. The mean of the test-retest measurement for each vendor is used in the plots. The y-axis shows the percentage difference between Philips-GE. For GM this gives a positive bias, for all 

other measures this bias is negative. The difference is small for BPV, ICV and MyC, but larger for WM, GM and CSF. 

 
Table 1: Dice scores of various segments with reference to a randomly chosen measurement. The scores are calculated from binary masks generated using a threshold of 30% for all segments except for MyC, 
where the threshold was 10%. The  scores indicate good to excellent agreement. An inter-scanner effect can be observed, causing somewhat lower scores for Philips compared to GE. Only for MyC this is 

not the case. 

 
Table 2: Coefficient of variation of the volumetric results, both for the test-retest measurements (top two lines) as for the inter-vendor comparison (bottom line). The average values of the test-retest 

measurements were used to calculate the inter-vendor CV. The intra-vendor measurements show a CV<1.5%, indicating an excellent agreement. For the inter-vendor comparison, the CV is still good, ranging 

between 0.77% for BPV to 4.30% for WM. 

Dice scores vs GE test

GE retest 0.92 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.78 ± 0.01 0.97 ± 0.00 0.99 ± 0.00

Philips test 0.89 ± 0.01 0.87 ± 0.01 0.84 ± 0.02 0.82 ± 0.01 0.96 ± 0.01 0.98 ± 0.00

Philips retest 0.89 ± 0.01 0.87 ± 0.02 0.83 ± 0.02 0.82 ± 0.01 0.96 ± 0.00 0.98 ± 0.00

GMWM CSF MyC ICVBPV
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Synopsis: CEST allows to non-invasively image metabolites and proteins. Although the role of APT and NOE-CEST in gliomas has been widely investigated, the 

contribution of amines to the CEST-signal at 2 and 3ppm, and its relationship to creatine and glutamate concentrations, remain unclear. We evaluated the amineCEST 

contrast in tumor and CLWM in three glioma patients, and compared it to the MRS data. Overall we found a decrease in amineCEST alongside a decrease in total 

creatine and glutamate in the tumor compared to the CLWM. 

Introduction: Chemical exchange saturation transfer (CEST) is a non-invasive MRI technique which can provide contrast originating from endogenous metabolites 

and proteins1. The usefulness of CEST imaging, specifically amide proton transfer (APT) and nuclear overhauser effect (NOE)2,3, has been widely explored in glioma 

patients. More recently, the role of amines, such as glutamate-weighted CEST (at 3ppm) has been explored in relation to metabolic changes in diffuse gliomas and 

epilepsy at 7T4. Moreover, the contribution of creatine, with amine protons (at 2ppm), has also been explored in patients with glioma and on pre-clinical glioma 

models5,6. Despite the evidence that amines at both 2 and 3ppm provide relevant information on gliomas, no study has yet directly compared them and investigated 

the metabolic origin of the signal from these pools using MR Spectroscopy (MRS). In this preliminary work, we assessed the amine CEST-contrast at 2 and 3ppm in 

three glioma patients and compared the CEST-signal with the current gold standard of metabolite imaging, MRS. 

Methods: We prospectively included three glioblastoma IDH-wild-type patients (2-Males, 1-Female, Mean age: 57+9). CEST, MRS and T2-weighted scans were 

acquired on a 7TMRI scanner. The T2-FLAIR was acquired as part of the clinical workflow at 3T. T2-weighted images were used to plan CEST and MRS scans. 

Slices of interest for CEST and volumes of interest (VOIs) for MRS included the largest tumor-lesion, excluding necrotic tissue. MRS data were also collected from 

a VOI positioned in contralateral white matter (CLWM). For quantitative comparisons of CEST contrast and MRS data, the MRS VOIs in the tumor and CLWM 

were used as a mask on the CEST-maps. Image acquisition details can be found in Table1. 

CEST images were corrected for B0 inhomogeneities by interpolation followed by shifting the Z-spectra based on the minimum Z; and B1 inhomogeneities, using a 

linear correction per voxel by using the B1-maps. The CEST Z-spectra and magnetization transfer ratio (MTR) asymmetry were calculated  

per voxel, for amines at 2 and 3ppm: 

Water-suppressed MRS spectra were corrected for eddy-currents using a custom-built MATLAB routine and fitted with LCModel7,8. A basis-set was generated using 

FID-A toolbox9. Concentration and cramer-rao lower bounds (CRLBs) for total creatine (Cr+PCr) and glutamate were obtained from LCModel output. In Figure1, 

the fitted spectra from the tumor lesion and CLWM of each patient are shown in red and green, respectively, as well as the corresponding VOI. 

Results: Figure2 shows the CEST results of one patient, where the MTR asymmetry maps for amines at 2 and 3ppm have been overlaid on the T2-FLAIR. In Figure 

3A, we display the MTR asymmetry values for each patient. MTR asymmetry values at 2ppm (orange squares - Subject1:10.79; Subject2:16.34; Subject3:8.36) are 

lower for tumors compared to CLWM (orange circles – Subject1:13.22; Subject2:17.88; Subject3:12.08). In Figure3B, the concentration of total creatine and 

glutamate are shown for both the tumor-lesion and CLWM. It can also be seen that the tCr concentration is lower in the tumor (orange squares – Subject1:12.85; 

Subject2:9.51; Subject3:9.33) when compared to CLWM (orange circles – Subject1:10.82; Subject2:11.24; Subject3:14.57) except for Subject1. Figure4 shows the 

ratios between tumor and CLWM, for CEST and MRS, per subject. In orange, tCr and amines at 2ppm illustrate comparable ratios, contrarily to glutamate and amines 

at 3ppm (in blue). 

Discussion and conclusion: This work aimed at assessing the amineCEST-contrast at  2 and 3ppm in glioblastoma compared to CLWM and their relationship to 

metabolite concentration measured by MRS at 7T.  

Contrarily to a recent study4, our results show a decrease in MTR asymmetry at 2 and 3ppm in tumors compared to CLWM. Neal et al. investigated the CEST-contrast 

of glutamate (at 3ppm) in mainly IDH mutant glioma patients (WHO grade-II/III) with epilepsy, supporting the role of glutamate in the biology of diffuse lower-

grade gliomas4. Differently from this study, our patient population consisted of only glioblastoma, IDH wild type patients. This could explain why we did not see a 

higher CEST-signal from tumors compared to CLWM. In line with our results, a recent study showed lower CEST-signal at 2ppm in high-grade glioma patients, and 

concluded that amineCEST at 2ppm could be useful for glioma stratification together with molecular markers6. Moreover, Cai et al. have previously shown a lower 

CEST-signal at 2ppm in a pre-clinical model of brain tumors and its correlation to creatine distribution5. Similarly, our results based upon MRS also suggest that 

creatine is the main contributor to the CEST-contrast at 2ppm. In conclusion, our results suggest that the amine pool at 2ppm relates to creatine distribution and can 

be used as a more prominent marker for glioblastomas. Work in progress includes collecting data from a larger group of patients to confirm our preliminary results. 
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Figure 1. Magnetic resonance spectroscopy (MRS) spectra: In red the voxel of interest 

(VOI) in the tumor and the correspondent fitted tumor spectra overlaid on T2-weighted 

images, for subjects 1, 2 and 3 (A, C and E, respectively). In green the VOI for the 

CLWM and the correspondent spectra, for subjects 1, 2 and 3 (B, D and F, 

respectively). 

Figure 3. A. Mean CEST MTR asymmetry values for each 

patient individually extracted from the MRS VOI. Tumor values 

are represented with a square and CLWM with a circle, for 

amines at 2ppm and at 3ppm, in orange and blue, respectively. 

B. Concentration values of tCreatine and glutamate derived from 

MRS, displayed for each the patient individually from the VOI, 

in orange and blue, respectively. Tumor values are represented 

with a square and the ones for the CLWM with a circle. 

Figure 4. The ratio between the tumor and CLWM values 

illustrated by a cross and triangle, for CEST and MRS, 

respectively. Each column represents the data from one subject. 

Ratios for tCreatine (in MRS) and amines at 2 ppm (in CEST) 

are in orange, and in blue for Glutamate (MRS) and amines at 3 

ppm (CEST). 

Table 1. Image acquisition parameters for CEST, MRS 

and T2-weighted scan at 7T and clinical T2-FLAIR. 

 

Figure 2. An example of CEST result for subject 1. A. The T2-

FLAIR image where the tumor lesion is highlighted in yellow. B, 

C. CEST MTR asymmetry maps overlaid on the clinical T2-

FLAIR. The maps correspond to the amines pool at 2ppm and 

3ppm on the left and right, respectively. 
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Synopsis: USPIO-enhanced MRI is a promising imaging method to detect metastatic lymph nodes in patients with head and neck cancer. In the validation process 

of the USPIO-enhanced MRI technique, it is of interest to determine whether phagocytic uptake occurs in the blood. Therefore this work investigates which blood 

compartments contain the USPIO particles after infusion. T2 relaxometry established that intravenously injected USPIOs are present in the serum and plasma 

compartments of the blood. 

 

Introduction: In patients with head and neck cancer, accurate detection of lymph node metastases is of great relevance regarding prognosis and treatment [1,2]. 

USPIO-enhanced MRI is a promising imaging method to detect metastatic lymph nodes. After intravenous administration, USPIOs accumulate in cells of the 

immune system residing within healthy (parts of ) lymph nodes [3], attenuating MR signal intensity in T2*-weighted pulse sequences. Suspicious lymph nodes 

retain MR signal intensity. In the validation process of this technique it is of interest to determine whether phagocytic uptake occurs in the blood or inside the 

lymph nodes. The aim of the present work is therefore to investigate which blood compartments contain the USPIO particles after infusion. 

 

Methods: Blood samples were collected from five head and neck cancer patients at two different timepoints. The baseline sample was obtained prior to the slow-

drip USPIO infusion, the second sample 45 minutes after the start of USPIO infusion. The blood was separated into six components: serum (SER), plasma (PLA), 

full blood (FB), peripheral blood mononuclear cells (PBMC), and granulocytes with and without red blood cells (GRA+RB, GRA-RB). The presence of USPIOs 

influences the relaxivity of the blood compartments and therefore the transverse relaxation times (T2) were measured, performing the Carr Purcell Meiboom Gill 

(CPMG) sequence [4,5] with 16 echo time points ranging from 1 – 100 ms, up to 2 – 5000 ms, depending on the a priori estimated T2. The relaxometry 

measurements were performed at a Bruker Avance 11.7 Tesla magnet, at room temperature (298K). After fourier transform of the 16 free induction decays, the 

decay curves of the integrated NMR signals of water were fitted with a mono exponential, using the Bruker Topspin software. Shorter T2 relaxation times indicate 

the presence of USPIOs. 

 

Results: After infusion, significantly shorter T2 times were observed in full blood, serum and plasma indicating the presence of USPIOs, which seem absent in 

other compartments. The decay of the NMR signal of water is depicted in Figure 1. Averaged transverse relaxation times of the six blood compartments with and 

without USPIOs are presented in Table 1. 

 

Discussion: Intravenously injected USPIOs are present in the serum and plasma compartments. These data indicate that USPIOs are not phagocytosed by the white 

blood cells present in the blood within 45 minutes after administration, but rather remain in the serum/plasma fraction. The full blood component represents the 

other compartments all together and therefore also shows significant difference in T2 times between blood with and without USPIOs. 
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Figure 1. Pseudo 2D of decaying NMR signal of water in blood variant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Mean T2 times (+/- SE), of six blood components with and without USPIOs. Statistical significant difference by t-test, indicated by * (p<0.05). 

 

 

SER PLA FB PBMC GRA+RB GRA-RB

T2(ms) 176.48 217.80 97.42 672.10 74.32 497.22

T2(ms) (+USPIO) 8.55 29.94 26.25 716.80 127.74 499.74
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Synopsis: Fitting the diffusion kurtosis imaging free water elimination model (DKI-FWE) to diffusion MRI data represents an ill-conditioned problem. Fortunately, 

the conditioning of the model fitting can be improved by explicitly modeling the T2 relaxation dependency of the signal. As a benefit, diffusion and kurtosis metrics 

robust to partial volume effects can be estimated with conventional techniques. In this work, we use Cramér-Rao lower bound (CRLB) theory to identify optimal 

acquisition settings that maximize the precision of the model parameter estimates. 

Purpose: The two-compartment diffusion kurtosis imaging free water elimination model (DKI-FWE)1 allows to mitigate the bias induced by partial volume effects 

on tissue-related diffusion parameters. The incorporation of the compartmental 𝑇2 relaxation times helps stabilize the FWE model fitting problem2. Therefore, 

accurate and precise parameter estimates can be obtained by using standard nonlinear least squares (NLLS) estimation techniques. However, DKI is a lengthy 

imaging protocol, implying that the choice of the data acquisition protocol plays a crucial role to achieve reliable quantification of the tissue properties in 

competitive acquisition times. In this work, we optimize the diffusion weighting strengths (𝑏-values) and echo time (TEs) in terms of the Cramér-Rao lower bound 

(CRLB) variances of the model parameters and derived metrics3. 

Methods: DKI-FWE with explicit 𝑇2 dependency (in short 𝑇2-DKI-FWE) models the 𝑇2 and diffusion weighted signal as: 

𝑆 = 𝑆00 ((1 − 𝑓) exp (−
TE

𝑇2
tissue) 𝑆tissue(𝑏, 𝒈; 𝜽DKI) + 𝑓 exp (−

TE

𝑇2
fw) exp(−𝑏𝑑)), 

with 𝑆00 the non-diffusion weighted signal at TE = 0 ms, 𝑓 the TE-independent free water signal fraction, 𝒈 the diffusion weighting direction, 𝜽DKI the diffusion 

and kurtosis tensor parameter vector and 𝑑 the diffusivity of free water fixed to 3 µm2/ms. While 𝑇2
tissue is estimated as an unknown model parameter, 𝑇2

fw is fixed 

to a constant value of 1573 ms derived from literature4. In this work, the acquisition schemes resulting from two different CRLB-based optimality criteria (𝑂1 and 

𝑂2) are compared with each other and with a reference scheme (𝑅) consisting of four fixed b-values (0, 0.5, 1 and 2 ms/µm2) acquired at two different TEs (63 and 

120 ms). The optimized scheme 𝑂1, previously suggested by the authors5, was obtained by minimizing the sum of the CRLB variances of 𝜽DKI, 𝑓 and the weighted 

CRLB variance of 𝑇2
tissue. In the current work, we assess an additional optimized protocol resulting from the minimization of the sum of the weighted CRLB 

variances of the fractional anisotropy (FA), mean diffusivity (MD), the linear part of the mean kurtosis (𝐾𝑎𝑝𝑝
∗ ), 𝑓 and 𝑇2

tissue. In line with our previous work5, 120 

uniformly distributed gradient directions were kept fixed during the optimization while 𝑏-values and TEs were free to vary in the range 0-2 ms/μm2 and 63-121 ms, 

respectively. The optimality criteria were averaged over 500 white matter voxels with a certain degree of free water contamination (0.05 ≤ 𝑓 ≤ 0.03) and extracted 

from the 𝑇2-DKI-FWE model fits of a real dataset. The weights applied in the optimization procedure were set equal to the inverse of the ground truth value of the 

parameter or metric of interest. The performance of all schemes was assessed both in terms of the maximum attainable precision (i.e. the CRLB) and the sample 

variances of relevant metrics (FA, MD, 𝐾𝑎𝑝𝑝
∗ , 𝑓 and 𝑇2

tissue). The sample variances were evaluated in a single-voxel Monte Carlo simulation framework and an 

unconstrained NLLS fitting routine was used to prevent the introduction of any source of bias due to the position of constraints. In all experiments, Gaussian data 

distribution was assumed and the signal-to-noise ratio (SNR) was defined on the non-diffusion weighted signal of a non-free water contaminated voxel (𝑓 = 0) at 

the lowest TE (i.e. 63 ms). 

Results: Figure 1 shows the distribution of the 𝑏-values and TEs for each acquisition scheme and a clustered version of the optimized schemes 𝑂1 and 𝑂2 is 

proposed for practical reasons. In Figure 2, the CRLB variances and the sample variances assessed in single-voxel experiments are compared for different metrics 

and for each scheme as a function of the SNR. Finally, in Figure 3, the sample variances of the FA, MD and mean kurtosis (MK) estimates are reported for the 

reference scheme 𝑅 and the clustered versions of 𝑂1 and 𝑂2. 

Discussion: The good agreement between theoretical bounds and sample variances (Fig. 2) suggests that minimizing the CRLB variances of the parameters of 

interest is an appropriate criterion for optimal design. Our results highlight that, depending on the parameters included in the cost function and the weighting 

strategy, the precision of a specific set of metrics can be favored. As a proof of concept, we compare the schemes resulting from two different optimality criteria, 𝑂1 

and 𝑂2. Both schemes outperform the conventional acquisition protocol 𝑅 in terms of the precision of FA, MD, 𝐾𝑎𝑝𝑝
∗  and 𝑓 in a range of medium/high SNR values. 

When comparing 𝑂1 and 𝑂2, it is clear that 𝑂2 leads to a gain in precision for MD, 𝑓 and 𝑇2
tissue while more precise FA and 𝐾𝑎𝑝𝑝

∗  estimates can still be achieved 

with 𝑂1. Finally, clustering the optimal settings in fixed 𝑏-TE combinations does not affect the precision of the diffusion derived metrics (Fig. 3) and allows to set 

up a more practical acquisition. 

Conclusion: This study shows that precise 𝑇2-DKI-FWE parameter estimates can be achieved in reasonable acquisition times (< 10 minutes) by using CRLB-

optimized settings. A validation of these findings on in vivo datasets will be subject of future work. 
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Figure 1. Top row: distribution of 𝑏-values and TEs for the reference scheme 𝑅 (left) and the optimized schemes 𝑂1 (center) and 𝑂2 (right). Bottom row: a more practical version of the acquisition schemes 

𝑂1 (center) and 𝑂2 (right) is proposed. 

 

 

Figure 2. Top row: CRLB variances and sample variances with 95% confidence interval of FA (top row, left), MD (top row, center), 𝐾𝑎𝑝𝑝
∗  (top row, right), 𝑓 (bottom row, left) and 𝑇2

tissue (bottom row, 

center) as a function of the SNR and for each acquisition scheme (𝑅, 𝑂1 and 𝑂2). A single voxel was simulated with ground truth FA = 0.60, MD = 0.89 µm2/ms, MK = 0.91, 𝑓 = 0.1 and 𝑇2
tissue = 70 ms. 

The fitting was repeated for 104 noise realizations. 

 

 

Figure 3. Sample variances of the FA, MD and MK estimates as a function of the SNR for the reference scheme 𝑅 and the clustered versions of the optimized schemes 𝑂1 and 𝑂2. A single voxel was 

simulated with ground truth FA = 0.60, MD = 0.89 µm2/ms, MK = 0.91, 𝑓 = 0.1 and 𝑇2
tissue = 70 ms. The fitting was repeated for 104 noise realizations. 
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Synopsis: 11C-UCB-J PET offers a unique imaging modality to map synaptic density in the human brain in vivo with high specificity. Here, we investigate its correlation 

with several diffusion MRI metrics and microstructure model parameters in diffusion-weighted PET-MR. We report moderate negative correlation of 11C-UCB-J uptake 

with measures of anisotropy, consistent with a hypothesis that higher synaptic density is associated with a more disorganised neurite configuration. We also find weak 

positive correlation to the intra-axonal signal fraction in cortical grey matter. As such, UCB-J PET-MR can further the interpretation and in vivo validation of more 

advanced microstructure models of grey matter. 

Introduction: Microstructure modelling with diffusion MRI (dMRI) can probe measures of neural and glial microstructure in the brain, based on models of tissue 

compartments and their contribution to the dMRI signal. However, the interpretation of current dMRI metrics and model parameters in relation to underlying biological 

effects often remains in question. Independent imaging modalities with higher specificity can aid our understanding of microstructure model parameters and offer a potential 

path toward their in vivo validation. 

The 11C-UCB-J radiotracer is a novel PET imaging tracer that binds with high specificity to the synaptic vesicle glycoprotein 2A 1, a protein that is expressed ubiquitously in 

presynaptic vesicles.11C-UCB-J  PET imaging therefore can serve as a proxy for synaptic density in the human brain 2. Synaptic density may, in turn, be expected to 

correlate with neurite (axon and dendrite) density in grey matter. 

Here, we explore to what extent conventional and more advanced dMRI metrics, including model estimates of neurite density, correlate regionally with 11C-UCB-J uptake in 

multi-shell diffusion-weighted PET-MR imaging data acquired in vivo. 

Materials and Methods: 

Data. We retrospectively selected imaging data of 8 healthy controls (4M, 4F; age 61-73y) with good quality data that were originally scanned for a clinical study on a GE 

Signa 3T PET-MR system. dMRI data were acquired with 2.5 x 2.5 x 2.5 mm resolution; TE = 87ms; TR = 6600ms; multiband (hyperband) factor 2; GRAPPA (ARC) 

factor 2; b-values 0, 700, 1000 and 2000 s/mm2 with 12, 20, 32 and 60 isotropically distributed gradient directions respectively. dMRI data were preprocessed with 

denoising 3, Gibbs ringing suppression 4, motion and distortion correction 5,6, and bias field correction 7 using MRtrix3 8. 11C-UCB-J  PET imaging was simultaneously 

acquired with spatial resolution of 4 x 4 x 4 mm; Standardized Uptake Value Ratio (SUVR) images were calculated relative to the centrum semiovale. A T1w image with 

1mm isotropic resolution was segmented into white matter (WM), cortical grey matter (CGM), and deep grey matter (DGM) using FSL FAST 9. 

dMRI metrics. We calculated 4 sets of dMRI parameters, shown in Figure 1: 

• Signal metrics: The mean dMRI signal in each shell and the generalised fractional anisotropy (GFA) in each shell, defined as the standard deviation of the signal 

intensity divided by the root mean square signal intensity. 

• DTI metrics: mean diffusivity (MD) and fractional anisotropy (FA) of the diffusion tensor 10, fitted to the b <= 1000 s/mm2 data. 

• MT-CSD metrics: the total apparent fibre density (AFD), defined as the integral of the WM fibre orientation distribution function (ODF), which was estimated 

using multi-shell multi-tissue constrained spherical deconvolution (MT-CSD) 11. 

• Microstructure metrics: parameters of the standard 2-compartment model of WM microstructure, which consists of an intra-axonal stick compartment with fraction 

f and axial diffusivity Di, and an extracellular zeppelin compartment with axial and radial diffusivity De
∥ and De

⟂ (parametrized by the trace De = De
∥ + 2De

⟂ and 

difference ΔDe = De
∥ - De

⟂), and which also models fibre crossings and dispersion in a ODF 12,13. The microstructure parameters and the ODF spectral power pL, 

L=0,2,4,... are jointly estimated in Bayesian fashion using Monte Carlo integration based on rotation-invariant signal features 14. 

Correlations. The dMRI and PET contrast were rigidly coregistered to the T1w image. We evaluated linear correlation coefficients (Pearson’s R) between the dMRI metrics 

and the 11C-UCB-J  SUVR maps in segmented CGM, DGM and WM in all subjects individually as well as aggregated across the cohort. 

Results: Figure 2 shows boxplots of the correlation coefficients in each of the dMRI contrasts. We find moderate (|R| > 0.5) negative correlation with measures of tissue 

anisotropy (GFA, FA, and the spectral power ratio p2/p0) in most tissues, with high consistency across subjects. 

In CGM, where 11C-UCB-J uptake is highest, we also find a weak positive correlation with the intra-axonal fraction f (R = 0.35), the intra-axonal diffusivity Di (R = 0.45), 

and the anisotropy of the extra-axonal compartment ΔDe (R = 0.47). 

The correlation with signal-level GFA measures exceeds model-based metrics. These correlations were also the most consistent across tissues and subjects. 

Joint histograms of 11C-UCB-J  uptake and the dMRI metrics, shown in Figure 3 for signal, DTI and MT-CSD metrics and in Figure 4 for standard model parameters, reveal 

nonlinear codependencies but also confirm the correlation with dMRI measures of anisotropy. 

Discussion and Conclusion: The moderate correlation with dMRI anisotropy is consistent with a hypothesis that higher synaptic density is associated with a more 

disorganised neurite configuration (dendritic branching etc.). Evidence of a positive correlation with neurite density in grey matter, measured indirectly by the intra-axonal 

fraction f or AFD, is weak or inconclusive. 

Due to the low spatial resolution of PET and dMRI relative to cortical thickness, partial volume effects are a limiting factor in the analysis. Furthermore, the standard WM 

model does not account for additional signal contributions in grey matter, notably due to soma presence 15 and inter-compartmental exchange 16. Future work can explore 

these and other more advanced microstructure models for grey matter with bespoke dMRI acquisition strategies. 

References: 

1. Nabulsi NB, Mercier J, Holden D, et al. Synthesis and Preclinical Evaluation of 11C-UCB-J 
as a PET Tracer for Imaging the Synaptic Vesicle Glycoprotein 2A in the Brain. J Nucl Med. 

2016;57(5):777-784. doi:10.2967/jnumed.115.168179 

2. Finnema SJ, Nabulsi NB, Eid T, Detyniecki K, Lin SF, Chen MK, Dhaher R, Matuskey D, 
Baum E, Holden D, Spencer DD, Mercier J, Hannestad J, Huang Y, Carson RE. Imaging 

synaptic density in the living human brain. Sci Transl Med. 2016 Jul 20;8(348):348ra96. doi: 

10.1126/scitranslmed.aaf6667. 
3. Veraart J, Novikov DS, Christiaens D, Ades-Aron B, Sijbers J, Fieremans E. Denoising of 

diffusion MRI using random matrix theory. Neuroimage. 2016;142:394-406. 

doi:10.1016/j.neuroimage.2016.08.016 
4. Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringing artifact removal based on local 

subvoxel-shifts. Magn Reson Med. 2016;76(5):1574-1581. doi:10.1002/mrm.26054 

5. Andersson JL, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo 
echo-planar images: application to diffusion tensor imaging. Neuroimage. 2003;20(2):870-

888. doi:10.1016/S1053-8119(03)00336-7 

6. Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance 
effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063-1078. 

doi:10.1016/j.neuroimage.2015.10.019 

7. Tustison NJ, Avants BB, Cook PA, et al. N4ITK: improved N3 bias correction. IEEE Trans 
Med Imaging. 2010;29(6):1310-1320. doi:10.1109/TMI.2010.2046908 

8. Tournier JD, Smith R, Raffelt D, et al. MRtrix3: A fast, flexible and open software framework 

for medical image processing and visualisation. Neuroimage. 2019;202:116137. 
doi:10.1016/j.neuroimage.2019.116137 

9. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov 
random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 

2001;20(1):45-57. doi:10.1109/42.906424 

10. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 
1994;66(1):259-267. doi:10.1016/S0006-3495(94)80775-1 

11. Jeurissen B, Tournier JD, Dhollander T, Connelly A, Sijbers J. Multi-tissue constrained 

spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage. 
2014;103:411-426. doi:10.1016/j.neuroimage.2014.07.061 

12. Novikov DS, Veraart J, Jelescu IO, Fieremans E. Rotationally-invariant mapping of scalar and 

orientational metrics of neuronal microstructure with diffusion MRI. Neuroimage. 
2018;174:518-538. doi:10.1016/j.neuroimage.2018.03.006 

13. Reisert M, Kellner E, Dhital B, Hennig J, Kiselev VG. Disentangling micro from 

mesostructure by diffusion MRI: A Bayesian approach. Neuroimage. 2017;147:964-975. 
doi:10.1016/j.neuroimage.2016.09.058 

14. Christiaens D, Veraart J, Cordero-Grande L, et al. On the need for bundle-specific 

microstructure kernels in diffusion MRI. Neuroimage. 2020;208:116460. 
doi:10.1016/j.neuroimage.2019.116460 

15. Palombo M, Ianus A, Guerreri M, et al. SANDI: A compartment-based model for non-

invasive apparent soma and neurite imaging by diffusion MRI. Neuroimage. 
2020;215:116835. doi:10.1016/j.neuroimage.2020.116835 

16. Jelescu IO, de Skowronski A, Palombo M, Novikov DS. Neurite Exchange Imaging (NEXI): 

A minimal model of diffusion in gray matter with inter-compartment water exchange. arXiv. 
2021;2108.0612

Correlating neurite density and synaptic density in the  

human brain in vivo with diffusion-weighted PET-MR 

 

P-024 
 

Abstract Category Perfusion/Diffusion 

 

 

  



 

 

 
Figure 1. Overview of the PET-MR parameter maps in a single subject: segmented T1w (WM, 

CGM & DGM); SUVR map of 11C-UCB-J uptake; mean and GFA of each shell of the dMRI 
data; DTI parameters mean diffusivity (MD) and fractional anisotropy (FA); apparent fibre 

density (AFD) estimated with MT-CSD; and the standard model parameters intra-axonal volume 

fraction f and diffusivity Di, extra-axonal diffusivity De and ΔDe, and the ODF spectral power 

ratio p2/p0. 

 
Figure 2. Boxplots of the correlation coefficients between SUVR and each of the listed 

parameter maps in segmented CGM, DGM and WM. The boxplots display the distribution 

across subjects; showing high consistency in most parameters and tissue classes. 

 
Figure 3. Joint histograms of selected signal, DTI, and MT-CSD metrics with 11C-UCB-J SUVR 

in CGM, DGM and WM, here shown for all subjects combined. 

 
Figure 4. Joint histograms of standard model parameters with 11C-UCB-J SUVR in CGM, DGM 

and WM, here shown for all subjects combined. 
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Synopsis: We evaluate the benefits of shifting from a global white matter (WM) model to an adaptive (voxel-wise) model in the Generalized Richardson Lucy (GRL) 

framework. Using simulations, we show that GRL with an adaptive model (AGRL) could resolve crossing fiber configurations with heterogeneous properties, whereas 

conventional GRL did not. In in-vivo data, AGRL simultaneously used different deconvolution models. Compared to GRL, fiber orientation distributions of AGRL 

showed remarkable angular differences, especially for the second and third peak. Tractography with AGRL resulted in a more extensive reconstruction of the arcuate 

fasciculus, suggesting adaptive modelling as a promising future direction.  

 

Introduction 

Spherical deconvolution methods1,2 leverage high-angular resolution brain diffusion MRI (dMRI) data to determine the orientation of crossing fibers in white matter 

(WM). Most spherical deconvolution methods use a global model of single-fiber WM (i.e., response function) across the brain to determine the fiber orientation 

distribution (FOD), implicitly assuming WM to be homogeneous. However, different WM fibers can exhibit heterogeneous properties3–5. In this work, we extend a 

recently introduced model-based spherical deconvolution framework6 to account for heterogeneous WM properties, and show proof-of-concept of its performance 

with synthetic and in-vivo MRI data. 

 

Methods 

Adaptive spherical deconvolution: The starting point of this work is the Generalized Richardson Lucy (GRL) deconvolution framework6. In GRL, we aim to solve 

the signal (S) equation 𝑆 = 𝐾 ∗ FOD. The columns of the deconvolution matrix K contain possible solutions to the deconvolution problem, e.g., projections of a 

single-fiber WM model along several directions uniformly distributed on the unit sphere. Instead of using a single K, with Adaptive GRL (AGRL) we propose to 

account for heterogeneous WM properties by generating N instances of K (Ki) corresponding to different parametrizations of a chosen signal model. In a first iteration, 

GRL is repeatedly performed for each Ki, and the columns of Ki that do not contribute to the FOD are removed. In a second iteration, the retained columns of all Ki 

are joined in a final deconvolution matrix K, and GRL is applied one final time to determine the final FOD.  

Experiments: In all experiments, we used the diffusion tensor imaging (DTI) model to simulate signals. Ten possible Ki were generated by varying the axial diffusivity 

in 10 steps between 1.2x10-3mm2/s and 2.1x10-3mm2/s while keeping the radial diffusivity fixed to a value estimated per dataset as previously described6.  

Experiment I: two crossing fibers (angle 45°) were generated with homogeneous (identical fractional anisotropy and mean diffusivity) and heterogeneous WM 

properties (different fractional anisotropy), respectively, with signal to noise ratio (SNR) at b = 0 s/mm2 equal to 30 using ExploreDTI7. The FOD was determined 

with GRL and AGRL, then deterministic fiber tractography was performed with step size 1mm, angle threshold 30°. 

Experiment II: We compared AGRL to GRL using 1 dataset from the Human Connectome Project8. We evaluated the spatial distribution of the signal fractions 

associated to each of the 10 WM-models, then evaluated the prevalence of each WM-model in the whole WM mask (segmented from a co-registered T1-weighted 

image using FSL9). Subsequently, the peaks associated to each FOD were extracted10 to determine their orientation and amplitude. Peaks with amplitude below 0.05 

were discarded. Finally, fiber tractography of the arcuate fasciculus was performed with both GRL and AGRL using a deterministic approach with step-size 0.6mm, 

angle threshold 45° and 60°. 

Results  

Experiment I 

Results in Fig. 1 show that GRL could only resolve homogeneous crossing fibers. Conversely, AGRL could correctly reconstruct both the homogeneous and 

heterogeneous configurations, albeit with a small angular error (white arrow, Fig. 1). This results suggest that a global WM model leads to erroneous FOD estimation 

when it does not match the underlying tissue properties, as expected3. 

Experiment II 

The signal fractions associated to each Ki when applying AGRL to in-vivo data are shown in Fig. 2. Part of the corpus callosum and of the deep WM are better 

described by Ki with lower axial diffusivity (corresponding to about 20% of the WM, Fig. 3C), whereas most superficial WM is better described by a Ki with higher 

axial diffusivity (~80% of WM, Fig. 3C). In most WM voxels, 3 to 4 WM-models are simultaneously used by AGRL (Fig. 3A-B).  

When comparing at the first FOD peak estimated with GRL and AGRL (Fig. 4), we observed little angular differences in deep WM. However, differences above 10° 

were observed for the first peak in regions with 3+ crossing fibers such as the centrum semiovale, and in proximity of (deep) gray matter. In over 10% of WM, angular 

differences for the second and third peaks were larger than 10°. In Fig. 5, we evaluated the impact of adaptive modelling fiber tractography of the arcuate fasciculus. 

In general, tractography with AGRL resulted in longer projections in the anterior part of the tract, larger coverage of the frontal lobe, and a more consistent 

representation of the bending part of the tract (see orange arrows in Fig. 5). These results were observed for both tested angular thresholds.     

Discussion and conclusion 

In this work, we have shown that using a global WM-model can lead to failures at detecting crossing fiber configurations when the underlying WM properties are 

largely different from those of the employed model. When applying AGRL in in-vivo data, we observe that multiple WM-models are simultaneously used in most 

WM voxels (>90%). While recent work suggests a global WM-model is sufficient to perform spherical deconvolution11, we observed considerable angular differences 

between GRL and AGRL. Angular differences are more apparent in the second and third peak than in the first peak and might thus be unobserved if not using high 

quality dMRI that allows to disentangle 2+ peaks robustly. Altogether, our results suggest that a spatially adaptive WM-model might improve the FOD estimation, 

and be beneficial for fiber tractography of the arcuate fasciculus and likely other tracts.  
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Fig. 1: Synthetic simulations of 2 crossing fibers (angle = 45°) with 

homogeneous properties (left, fractional anisotropy = 0.9, mean diffusivity 

= 0.7x10-3mm2/s) and heterogeneous properties (right fractional 

anisotropy = 0.9 / 0.4, mean diffusivity = 0.7x10-3mm2/s). AGRL can 

resolve heterogeneous crossing fibers, whereas GRL only identifies the 

fiber with higher fractional anisotropy. 

 

 

Fig. 2: Signal fractions corresponding to 10 WM models with increasing values of axial diffusivity from 

1.2x10-3mm2/s to 2.1x10-3mm2/s. The last two signal fractions correspond to isotropic diffusion 

classes (gray matter and cerebrospinal fluid). 

 

 

Fig. 3: A) a visual representation of the number of Ki simultaneously used by AGRL per 

voxel; B) The probability distribution function (PDF) of the number of Ki used in the 

whole WM and C) the PDF of each Ki in the whole WM. 

 

 

Fig. 4: The first row shows an example coronal slice of the angular difference between 

GRL and AGRL, whereas the second row shows the histogram of the difference in the 

whole WM mask.  

 

 

Fig. 5: Deterministic fiber tractography of the arcuate fasciculus using the seed region highlighted in white in the top left 

corner. Tractography with AGRL resulted in more extensive coverage of the inferior and superior frontal lobe (orange 

arrows), but also in a slightly larger number of spurious fibers. 
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Synopsis - Besides the parenchymal diffusion and microvascular pseudo-diffusion, a third diffusion component was previously found in cerebral 

intravoxel incoherent motion (IVIM),representing interstitial fluid. However, estimating this intermediate IVIM component can be challenging, since 

spectral decomposition techniques have strong dependence on the number of samples (i.e. acquired b-values) and SNR. Therefore, it is important to know 

which b-values are essential to be acquired. In this study, an optimal b-value sampling for estimating the intermediate component is derived using a 

genetic algorithm. The optimal sampling (0,20,100,270,280,370,540,650,660,710,720,790,980,990,1000 s/mm2) was shown to outperform linear and 

logarithmic samplings, for both simulated and in vivo data. 

Introduction 

Cerebral intravoxel incoherent motion (IVIM) is a diffusion-weighted MR imaging technique that has the potential to simultaneously measure the parenchymal 

diffusivity and microvascular perfusion1. Recently, it was shown that a third, intermediate, IVIM-component can be extracted from the IVIM signal2. This 

additional component is thought to be related to the interstitial fluid (ISF) in the extracellular or perivascular spaces3.  

Estimating the intermediate IVIM component can be challenging, since spectral decomposition using the non-negative least squares (NNLS) is an ill-posed 

technique with strong dependence on the number of samples (i.e. acquired b-values) and SNR. Since acquisition time limits the total number of acquired b-values, it 

is important to know which b-values are essential to be acquired. Therefore, in this study we will assess an optimal b-value sampling strategy for estimating the 

intermediate component. The optimal sampling will be derived using a genetic algorithm4 and simulated data. Subsequently, the performance of the optimal 

sampling will be compared to a linear and logarithm sampling using simulations and in vivo data. 

Methods 

Numerical simulations 

To evaluate the optimal b-value sampling scheme, ground-truth IVIM signals were synthesized using, 𝑆(𝑏) = 𝑆0[(1 − 𝑓𝑖𝑛𝑡 − 𝑓𝑚𝑣)𝑒−𝑏𝐷𝑝𝑎𝑟 + 𝑓𝑖𝑛𝑡𝑒−𝑏𝐷𝑖𝑛𝑡 +
𝑓𝑚𝑣𝑒−𝑏𝐷𝑚𝑣] + 𝜀𝑏, where, 𝑓𝑖𝑛𝑡 and 𝑓𝑚𝑣 are amplitude fractions of the intermediate and microvascular components. 𝐷𝑝𝑎𝑟 , 𝐷𝑖𝑛𝑡  and 𝐷𝑚𝑣  are the diffusivities for the 

parenchymal, intermediate and microvascular components. Decay curves were synthesized with diffusivity values randomly sampled from a uniform distribution 

with the following ranges, 𝐷𝑝𝑎𝑟 = .1 ∙ 10−3 ≤ 𝐷 < 1.5 ∙ 10−3 𝑚𝑚2/𝑠, 𝐷𝑖𝑛𝑡 = 1.5 ∙ 10−3 ≤ 𝐷 ≤ 4.0 ∙ 10−3 𝑚𝑚2/𝑠  and  𝐷𝑚𝑣 = 4.0 ∙ 10−3 < 𝐷 ≤ 200.0 ∙

10−3 𝑚𝑚2/𝑠. Similarly, the amplitude fractions were randomly sampled from a uniform distribution, where . 0 ≤ 𝑓𝑚𝑣 ≤ .1 and . 0 ≤ 𝑓𝑖𝑛𝑡 ≤ .3. To simulate the 

effect of noise, 100.000 Gaussian noise realizations were performed with an SNR of 100 at b=0 s/mm2.  

In vivo MRI 

A single subject (67y, male) underwent high-field MRI (7T Magnetom, Siemens Healthcare, Erlangen, Germany). IVIM images were acquired using a multi-shot 

spin-echo echo-planar-imaging sequence (TR/TE=22800/57.6ms; resolution=1.5x1.5mm, slice thickness=3.5mm, acceleration factor=2, acquisition time=49 

minutes), after cerebrospinal fluid suppression (TI=2330ms). 101 diffusion sensitive b-values were acquired, ranging from 0 to 1000 with increments of 10 s/mm2. 

The IVIM images were corrected for head displacements. 

IVIM analysis 

The IVIM data is analysed with the NNLS algorithm, using a basis set of 200 logarithmically spaced functions. From the obtained spectrum, the 𝑓𝑖𝑛𝑡 is calculated as 

the ratio of the intermediate components (𝐷𝑖𝑛𝑡) to the amplitude of all components. For the in vivo data, the resulting amplitude fractions were subsequently 

corrected for T1 and T2 relaxation effects2.  

Genetic Algorithm 

First, a random population (i.e., first generation) will be initialized as 100 binary vectors of length 101 with 15 non-zero elements (b-values ranging from 0 up to 

1000 s/mm2 with increments of 10 s/mm2). Second, the performance of each b-value sampling scheme will be assessed by the root mean squared error (RMSE) of 

the estimation of 𝑓𝑖𝑛𝑡, 𝐹𝐹 = √1
𝑁⁄ ∙ ∑( 𝑓𝑖𝑛�̂� − 𝑓𝑖𝑛𝑡)2, where 𝐹𝐹 is the fitness function, 𝑁 is the number of noise realisations, 𝑓𝑖𝑛�̂� is the ground-truth and 𝑓𝑖𝑛𝑡 is the 

estimated amplitude fraction of the intermediate component. The 20 sampling schemes with the best performance, i.e. the parents, will be kept for the next 

generation, while the other 80 will be replaced by 40 new sampling schemes obtained using cross-over and 40 using mutations (Figure 1). This process is repeated 

up to the 250th generation. The only constraint is that the b-value samplings must include b=0 s/mm2, since this is required normalizing the IVIM signal.  

Evaluation 

The performance of the optimal b-value sampling strategy was compared to a linear and logarithmic sampling in terms of the RMSE of 𝑓𝑖𝑛𝑡. For the in vivo data, a 

ground-truth is calculated as the mean 𝑓𝑖𝑛𝑡 of the white matter (WM) as well as the gray matter (GM) using a voxel-wise fit where all 101 b-values are included. 

Subsequently, the mean 𝑓𝑖𝑛𝑡 of the optimal sampling is compared to the ground-truth, as well as to the linear and logarithmic b-value samplings. 

Results 

The evolution of the population (i.e. the b-value sampling schemes) over several generations is shown in Figure 2. The optimal b-value sampling is found to be; 

0,20,100,270,280,370,540,650,660,710,720,790,980,990,1000 s/mm2. For the simulated data, the optimal b-value sampling strategy was found to be at least 1.24 

times more accurate compared to the linear and logarithmic sampling in terms of RMSE (optimal: .29 vs reference: .36 vs linear: .36). For the in vivo data, the 

optimal sampling strategy resulted in a mean 𝑓𝑖𝑛𝑡 that is very close to the ground-truth for both WM and GM. Moreover, the mean 𝑓𝑖𝑛𝑡 of the optimal sampling best 

approximates the ground-truth compared to the linear and logarithmic sampling (Table 1). An IVIM decay curve of the in vivo data, including the optimal 

sampling, is shown in Figure 3. 

Discussion and Conclusion 

This study presents an optimal b-value sampling for estimating 𝑓𝑖𝑛𝑡. The optimal sampling was shown to outperform linear and logarithmic sampling strategies, for 

both simulations and in vivo data. From previous work on mono-exponential decaying functions5, we expect that the b-value range corresponding to 𝐷𝑖𝑛𝑡  ∙ 𝑏 ≈ 1.3 

would be especially beneficial for estimating 𝑓𝑖𝑛𝑡. Since the intermediate component is expected to be 1.5 ∙ 10−3 ≤ 𝐷 ≤ 4.0 ∙ 10−3 𝑚𝑚2/𝑠, this would correspond 

to the range b=325 to 867 s/mm2.  Indeed, our results show that this b-value range is important, since almost half of the ‘optimal’ b-values span this range. 
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Figure 1: A) Cross-over. To define a new sampling scheme, two random parents are chosen and elements (b-values) from both parents are used to create off-

spring. B) Mutations. Mutations are divided into two separate mutation methods, random mutations and targeted mutations. In both cases a random number of b-

value samples in the sampling scheme is replaced by another b-value. For random mutations, the replacement is random, while for targeted mutations the b-value 

will be replaced by a proximal b-value with a distance ranging from -50 up to50 s/mm2. 

Figure 2: Evolution of the b-value sampling strategies, for generation 1, 50 and 250. The parents selected based on their fitness are shown in green, while the off-

spring created using cross-over, random and targeted mutations are shown in yellow, blue and purple, respectively. 

Table 1: Means fint of for all the 101 b-values (ground-truth), the optimal, linear 

and logarithmic sampling strategies. Abbreviations: WM, white matter; GM, 

gray matter. 

Figure 3: IVIM-signal decay curve for a single voxel from the in 

vivo 7T data. Optimal b-value sampling is visually indicated as the 

larger, green, dots. 

 

P-026 
 

Abstract Category Perfusion/Diffusion 

 

  



 

  

 

S. Rauh1, J. Monte2, M. Hooijmans2, J. Suskens3, O. Gurney-Champion2, J. Tol3, M. Maas2, A. Nederveen2, G. Strijkers1 
1Department of Biomedical Engineering and Physics, Amsterdam UMC, Amsterdam, The Netherlands; 2Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, 

The Netherlands, 3Department of Orthopedic Surgery, Amsterdam UMC, Amsterdam, The Netherlands 

 

Acknowledgments / Funding Information: The authors would like to thank Martijn Froeling for help with the scan protocol and the pre-processing pipeline. The study was partly funded by a grant from 
‘NBA&GE Orthopedics and Sports Medicine Collaboration’, USA. 

 

Synopsis: DTI and IVIM are sensitive to hamstring injuries, but suffer from long scan times. Using b-values above a certain threshold only (high-b DTI) or a simplified IVIM approach (sIVIM-DTI), 

which estimates the perfusion fraction and diffusion tensor, can reduce the scan time while inherently correcting DTI-indices for IVIM effects. We showed in this work that those methods provide similar 

sensitivity to hamstring injuries in comparison to a full IVIM-DTI fit while reducing acquisition time up to 42%. Since no difference in perfusion fraction was found between injury states, we suggest high-b 

DTI is the method of choice in this application.  

Introduction: Hamstring injuries are amongst the most common injuries in elite athletes and show high recurrence rates1,2. Diffusion tensor imaging (DTI) and intravoxel incoherent motion (IVIM) are 

sensitive to muscle micro damage3,4 and may be able to assess acute muscle injury recovery and predict return-to-play (RTP). IVIM-corrected DTI has an improved reproducibility compared to conventional 
DTI5. A downside of IVIM-correction is the substantial increase in scan time. Applying the DTI fit only to high b-values above a certain threshold or using a simplified IVIM-DTI approach may significantly 

reduce scan time while inherently correcting DTI indices for IVIM effects. The goal of this work was to evaluate the sensitivity of accelerated DTI and IVIM-DTI to acute hamstring injuries compared to a 

full IVIM-DTI fit.  

Methods: MRI datasets were acquired in 41 elite athletes (2 female, mean age 27.3 years) with acute hamstring injury using a 3T-MRI (Philips Ingenia) at three time points (Error! Reference source not 

found.). The scan protocol included an anatomical Dixon scan (1.5x1.5x2.5mm³, 80 slices, 6 echoes) and a DTI-IVIM scan (duration 11:08min, SE-EPI; 3x3x5mm³, 40 slices, TE/TR=55ms/5914ms, SPAIR 

and gradient-reversal fat suppression, SENSE=1.5) with 10 b-values (range 0-600s/mm², 8x b=0s/mm²) and 56 diffusion directions. The DTI data was PCA-denoised and registered to the anatomical scan 

using QMRTools6. The diffusion tensor was calculated using three different fitting methods:  

1. IVIM-corrected DTI (in the following called ‘conventional’), consisting of four steps: 

a. IVIM fit the mean data.  

b. Voxel-wise IVIM fit with fixed pseudo-diffusion coefficient D* obtained from step a.  

c. IVIM-component subtraction from signal: 

SDTI = S − S0,IVIM ∙ f ∙ e−b∙D∗
 

d. DTI fit to SDTI using all b-values.  

2. High-b DTI. The data was retrospectively undersampled, discarding all b-value<200s/mm², resulting in b=200,400,600s/mm² and 32 diffusion directions. Then a DTI fit was applied.  

3. sIVIM-DTI: The same high-b-values and directions as in high-b DTI were used (32 directions) and b=0s/mm² data (8 scans) were included to estimate the perfusion fraction f, yielding 40 b-

value/direction combinations. A simplified IVIM-DTI approach was applied:  

𝑆(𝑏) =  𝑆0 ∙ (𝑓 ∙ 𝛿(𝑏) + (1 − 𝑓) ∙ 𝑒
−𝑏∙𝑔𝑇𝐷𝑔

 

Manual segmentation of the injured and contralateral muscle was performed in ITK-snap (www.itksnap.org). ROIs consisted of 7 slices overlaying the origin of the injury and a closely matching region in 
the contralateral muscle. The mean and standard deviations of the DTI parameters (tensor eigenvalues (λ1–λ3), mean diffusivity (MD), fractional anisotropy (FA), perfusion fraction (f)) were calculated within 

the segmentation for the injured and contralateral muscle and for each method and time point. A repeated measures Anova was used to evaluate the three methods (SPSS). The sensitivity of the methods to 

injury was assessed by comparing the difference between the injured and contralateral muscle (Δ injured-healthy). The stability of the methods was evaluated by comparing the standard deviations of the DTI 

parameters in the healthy muscle. The difference between the methods and injury states was assessed for both injury states separately.  

Results: The proposed methods yield a scan time reduction of 42% (high-b DTI) and 28% (sIVIM-DTI) compared to the conventional method. Parameter maps are shown in Error! Reference source not 

found.. Sensitivity: At baseline, a larger  Δ injured-healthy was found with high-b DTI and sIVIM-DTI for λ1–λ3  and MD compared to the conventional method. No difference was found for FA or between 

sIVIM-DTI and high-b DTI. The difference between the methods disappeared at 2-weeks and RTP. After 2-weeks, Δ injured-healthy of  FA was higher for sIVIM-DTI than high-b DTI (Error! Reference 

source not found.). Stability: The standard deviations of λ2,λ3,MD,FA and f  were significantly higher in high-b DTI and sIVIM-DTI compared to the conventional fit at baseline and 2-weeks. No differences 

were found for λ1 (Error! Reference source not found.). The standard deviation for FA was higher in sIVIM-DTI than high-b DTI. No differences were found at RTP. Injury sensitivity and method 

differences: At baseline and 2-weeks, the injured muscle had higher MD and eigenvalues than the healthy muscle for all methods. No effect for injury was found in FA and f. The difference disappeared at 
RTP. An offset between conventional fitting and accelerated fit outcome measures was found (Error! Reference source not found.). λ1–λ3 and MD were highest with conventional fitting and higher in high-

b DTI than sIVIM-DTI. The opposite effect held for FA and f. 

Discussion: Our data showed that the sensitivity to hamstring injuries is preserved with our accelerated high-b DTI and sIVIM-DTI methods. The increased Δ injured-healthy values at baseline might 

indicate improved sensitivity. The higher standard deviation with accelerated methods could be a result of higher noise contribution in the high b-value data. The overall offset between the conventional and 

accelerated approaches at all time points might be due to more noise at high b-values, reduced data used for the fit or a suboptimal fixed D* value in the conventional fit which might result in remaining IVIM 

signal in SDTI. With both conventional IVIM-DTI and sIVIM-DTI methods, no difference was observed in f between injury states. This might indicate that f is not sensitive to hamstring injuries.  

Conclusion: High-b DTI and sIVIM-DTI reduce scan time and preserve sensitivity to hamstring injuries. Since f shows no sensitivity to injury, the high-b DTI method may be considered the best method 

for this application.  
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Figure 1. Workflow of the MRI measurements of patients with acute hamstring injury. The patients 
were scanned within 7 days after the injury (Visit 1, baseline scan), 2 weeks after visit 1 (Visit 2, 2-

weeks scan) and within 7 days after Return-to-Play (Visit 3, RTP). 41 patients were included and 

completed the baseline and 2-weeks follow-up scan. 12 patients completed the RTP scan. For 12 

patients 2-weeks follow-up coincided with RTP. 17 patients had no RTP scan.  

 

 

 

 

Figure 2. Parameter maps of Mean Diffusivity (MD) and Fractional Anisotropy (FA) from all three fit 
methods of one representative patient at baseline. Segmentations of the injury (red) and the healthy 

contralateral muscle (green) are overlaid. No clear difference between the parameter maps obtained from 

the different fitting methods can be observed. 

 

 

 

 

 

 

  

       Figure 3. Difference between the injured–healthy parameters (Δ) for all three methods and time points. For all 

methods, Δ injured-healthy values lie in a similar range without obvious outliers, indicating preserved sensitivity 

to injury of accelerated DTI and IVIM-DTI methods compared to the conventional fit. A significantly higher Δ 
injured-healthy was found at baseline for high-b DTI and sIVIM in λ1, for high-b DTI in λ3 and after 2-weeks for 

sIVIM compared to high-b DTI in FA. (conv. = conventional) 

 

        

                                                                                                                                                      Figure 4. Standard deviations of λ1 and λ3 in the contralateral healthy muscle for all three time points and  
                methods. No difference was found for λ1. For λ3, standard deviations were significantly higher with the  

                accelerated methods, however, the absolute differences were small (mean difference λ3 between conventional and  

                high-b DTI/sIVIM: 0.23/0.23, 0.22/0.22, 0.20/0.21, for baseline, 2-week follow-up and RTP respectively).    

                (conv. =  conventional) 

 

 

  

Figure 5. Time course of λ3 and FA for the injured and healthy muscle for all fitting methods (mean values 

plotted). The healthy values stay almost constant between baseline and 2-week follow-up for all methods, while 

the injured values converge towards the healthy. The change in the healthy values at RTP might be explained 
by less data (N=12 at RTP). An offset between the conventional and proposed methods can be observed for 

both, injured and healthy muscle at all three time points. Only a minor difference is visible between high-b DTI 

and sIVIM-DTI. 
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dtiRIM: A recurrent inference machine for diffusion tensor estimation 

 

 

 

 

Synopsis: In Diffusion MRI, the large variability of acquisition schemes limits broader use of Deep Learning for parameter estimation, with data-specific models needed for high-quality predictions. To 

reduce dependency on training data, we present dtiRIM, a recurrent neural network that learns a regularized solution to a model-based inverse problem. Using the diffusion model allows independent 
parameters (e.g. gradient directions) to also influence the estimation. We show that a single dtiRIM model predicts diffusion parameters for multiple datasets with lower error than the current state-of-the-art. 

Our study suggests that dtiRIM has the potential to be the first general learning method for DTI. 

Introduction: An outstanding challenge when using Deep Learning (DL) for Diffusion Tensor Imaging (DTI) is the large variability of acquisition settings (e.g. number of q-space samples, gradient 

directions and strength) between datasets. Existing works1-3 applied DL to estimate diffusion properties (e.g fractional anisotropy (FA), mean diffusivity (MD)) from diffusion-weighted (DW) images, but 

different acquisition schemes required training new models. 

In this study, we propose to use the Recurrent Inference Machine (RIM) framework4 to estimate the diffusion tensor parameters with low dependency on scan settings. RIMs learn to minimize a model-based 

likelihood function, allowing for greater variability of fixed model parameters (e.g. gradient directions). We evaluated our model in simulation and in-vivo experiments. 

Methods: Our RIM for DTI ( ) is shown in Figure 1. The RIM is a recurrent neural network function  that has learned to predict the parameters 

 that maximize the Rice likelihood , given acquired DW images , gradient strength ( ) and directions ( ); here,  is the non-diffusion-weighted 

signal and  is the diffusion tensor. The network weights  are trained on simulation data, by minimizing the differences between ground-truth noiseless DW images  and predicted images 

: , where  is the number of images in the training set. 

Training samples  were generated with the Numerical Fiber Generator5 (NFG). For each sample ,  was simulated with uniformly sampled FA  and MD

, , and  and  randomly sampled from a pre-determined set . To ensure approximately uniform sets of gradient directions of size  (in steps 

of 6), we selected 10 unique subsets  with the lowest electrostatic repulsion6 (ER) among 1000 random subsets of size . Finally, Rician noise was added. In total,  noisy training samples 

were created. 

Two validation sets were used to tune the RIM's hyperparameters. The first ( ) was also created with NFG, but with a different configuration of fibers,  and SNR 25. The second (

), was created using the Diffantom simulator7, with gradients  and SNR 30.  

In contrast to voxel-wise methods, RIMs also learn a spatial regularization8 that might provide robustness to small deviations between signals and the diffusion model. To evaluate this, we created additional 

 and  datasets with (slightly) misaligned images. Random rigid transformations were applied when generating  from , with translations and rotations independently sampled 

from , with small  to simulate sub-voxel misalignment. Fifty realizations of motion and noise were created per data set. The bias, standard deviation and RMSE of the FA and MD 

maps were evaluated. Ground-truth maps were defined as the least-squares solution of  on . 

The testing data ( ) is composed of 1 subject from the AOMIC-ID1000 dataset9, acquired with gradient directions , and  . To evaluate our method's precision, we 

emulated repeated scans by creating 4 datasets from the original data with varying number of images ( ). Each contained 5 unique DW sets, with  selected by minimizing 

the ER among 100 random subsets of . Ground-truth maps were obtained from the full set ( ) with the state-of-the-art 10 from MRTrix311, also used here as baseline in all experiments. 

Statistical significance was evaluated with an unpaired t-test ( ). 

Results: Figure 2 shows the results of the FA for all datasets. On  datasets,  presented lower bias, STD and RMSE than . On  datasets,  had lower STD 

and RMSE, but higher bias. Additionally,   errors increased slower than  for larger . For ,  had lower STD ( ), but larger bias and RMSE for . 

Figure 3 shows the results of the MD for all datasets.  had lower bias, STD and RMSE than  in all validation datasets. In ,  had lower STD, but higher RMSE compared 

to , while no significant differences were found for bias. 

Figures 4 and 5 show FA and MD maps from  and  (data ) alongside RMSE maps computed for different .  FA estimates are less dependent on  than 

's, while MD maps are smoother, and with lower accuracy in high diffusivity regions (e.g. ventricles). 

Discussion: We showed that a single RIM model can be used with DW images acquired with different number of q-space samples, gradient directions and strength. The  reduced FA and MD 

errors compared to the state-of-the-art  for most datasets. The negative FA bias on in-vivo data can be (mainly) attributed to lower FA estimates in gray matter and CSF, while smaller differences 

were observed on white matter. MD maps from  are slightly blurred compared to 's, promoting higher estimation precision, at the cost of higher total error. Additionally, (slight) robustness 

to misaligned images was shown. 

Conclusion: This work presented a novel approach to estimate DTI parameters. Our Recurrent Inference Machines method provides estimates with similar or lower error than IWLLS. It showed robustness 

to anatomy and variation in scan protocol, including q-space sampling. Although more validation is needed (e.g. larger in-vivo datasets, pathology), our study suggests that the RIM can provide diffusion 

parameters that are robust and of higher quality than the current state-of-the-art. 
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Figure 1. RIM framework ( ). At a given step , the neural network  receives the 

current parameter estimates , the gradient of a likelihood, , and a vector of memory states  the RIM can 

use to keep track of optimization progress. The network outputs an update to the current estimate  ( ). 

 

 

 

 

 

 

 

 

 

Figure 2. Error measurement in Fractional Anisotropy estimation for different motion severity ( ) with simulation ( , 
) and in-vivo datasets ( ). Measures of bias, standard deviation (STD) and root-mean-square error (RMSE). 

Whiskers represent the 95-percentile and outliers are not shown. All mean differences between  and  are significant 

(unpaired t-test, ) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Error measurement in Mean Diffusivity estimation for different motion severity ( ) with simulation ( , 

) and in-vivo datasets ( ). Measures of bias, standard deviation (STD) and root-mean-square error (RMSE). 

Whiskers represent the 95-percentile and outliers are not shown.  denotes non-significant mean differences (unpaired t-test, 

). 

 

 

 

 

 

 

 

Figure 4. Left column shows estimated fractional anisotropy (FA) maps for  and . RMSE maps for 

different number of q-samples ( ) are shown on the right. RMSE was defined, per pixel, as , where 

 is the repetition index,  is the estimated FA map and  is the  FA estimate using fully-

sampled set ( ). 

 

 

 

Figure 5. Left column shows estimated mean diffusivity (MD) maps for . RMSE maps  for 

different number of q-samples ( ) are shown on the right. RMSE was defined, per pixel, as , where 

 is the repetition index,  is the estimated MD map and  is the  MD estimate using fully-sampled 

set ( ). 
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Synopsis: We aimed to compare the AIF determined from DCE-MRI with the AIF from DSC-MRI in back-to-back imaging, using the same dose of 

Gadobutrol. The DCE-driven AIFs showed the same ‘pattern’ as the DSC-driven AIFs, but had smaller variance of the shape and peak value. A linear 

relation was found between the contrast agent concentration from DCE and ∆R2*, but the linear coefficients showed large variation across regions and 

subjects. Our findings show that the DCE-driven AIF has the potential to serve as an alternative for the DSC-driven AIFs for quantitative perfusion 

assessment. 

Purpose: The Arterial Input Function (AIF) plays a crucial role in estimating perfusion properties from Dynamic Susceptibility Contrast MRI (DSC-MRI). 

An important issue, however, is that measuring the AIF’s absolute contrast concentration is challenging due to uncertainties in the relation with the 

measured R2*-weighted signal1–3. In addition, several experimental difficulties hinder measuring the AIF in DSC-MRI. First, the AIF can become distorted 

due to partial volume effects4. Second, the signal in large arteries tends to reach the noise floor during the passage of contrast agent5. Third, signal can be 

shifted, especially during the peak, due to local resonance frequency changes as induced by the high concentration of contrast agent6. A potential solution 

could be to derive the AIF from separately acquired Dynamic Contrast Enhanced MRI (DCE-MRI) data, which provides higher spatial resolution, has a 

known relation between signal-change and Gd-concentration7, and is not susceptible to signal saturation nor vessel displacement6. Such a DCE-scan could 

be measured during a pre-loading bolus injection, potentially with similar duration as the DSC-scan.  

In this study, we aim to systematically compare (1) the AIF determined from DCE-MRI with the AIF from DSC-MRI in back-to-back imaging and (2) 

assess the linearity of the contrast concentration measured from DCE-MRI and the ∆R2* from DSC-MRI.  

Methods: Subjects: 4 patients with histologically confirmed, IDH mutated glioma (WHO grade 2 or 3) were recruited as part of the associated RIGEL study 

(trial identifier: NCT04304300).  

Imaging: MRI scans were acquired two months before radiotherapy by using a 48-channel head coil in a 3T MRI (Signa Premier, GE Healthcare, 

Waukesha, WI, USA) in Erasmus Medical Center (Rotterdam, Netherlands). A single dose of Gadobutrol (0.1mmol/kg, Gadovist®, Bayer, Germany) was 

injected at 5mL/s followed by a 15mL NaCl flush (same injection rate) using a power injector 10 seconds after the start of both DCE and DSC acquisition, 

respectively. DCE images were acquired using a differential subsampling with cartesian ordering sequence8 with TR/TE: 2.7/0.9ms, flip angle: 14o, FOV: 

220×220×142mm3, matrix size: 128×128, 72 slices, in-plane resolution: 1.7×1.7mm2, slice thickness: 2mm, and temporal resolution: 2s, 183 dynamics. 

DSC images were obtained with a T2
*-weighted gradient echo echo-planar imaging sequence with TR/TE: 2000/45ms, FOV: 220×220×140mm3, matrix 

size: 100×100, 29 slices, in-plane resolution: 2.2×2.2mm2, slice thickness: 5mm, temporal resolution: 2s, 50 dynamics.  

Analysis: Rigid-body registration was performed to align all DSC images to the first volume of DCE images by SPM129. AIFs were selected manually and 

semi-automatically: (1) five Region-Of-Interests (ROIs) were annotated in the DCE images, each in a different artery and on a different slice; (2) these 

selected ROIs were then projected onto the registered DSC images; all voxels included within the ROI were used for AIF-determination (3) a semi-

automatic approach10, based on a clustering approach favoring early bolus arrival time, high peak value and fitting with a gamma function, was 

implemented to derive five AIFs from the same DSC slices as previous step. The DCE-driven AIF (1) was derived from the annotated region according to a 

previously published approach11, in which Orton’s model was used to estimate the perceived number of excitation pulses to compensate inflow effects. The 

DSC-driven AIFs (2)(3) were estimated by assuming a linear relation between ∆R2* and contrast agent concentration12. Subsequently, the AIFs were plotted 

to visually explore their characteristics. Furthermore, the linearity of the relation between the DCE-driven and DSC-driven AIFs was assessed.  

Results: Fig.1 shows the DSC and DCE AIFs, obtained from multiple voxels in a representative vessel. It demonstrates that while the mean curves had 

similar shapes, the DCE-AIF yielded much more consistent curves (less variation) (Fig.1c,d). Furthermore, the DCE-AIFs from different arteries, from 

different slices, and from different subjects exhibited more reproducible results than the DSC-AIFs (Fig.2). Finally, the semi-automatically selected DSC-

AIFs demonstrated higher peak values and narrower width than derived from manually selection and as compared to the DCE-AIF (Fig.3). Fig.4 shows the 

scatter plot of the DCE-AIF and DSC-AIF for one artery in each of the four patients. The DCE-based contrast agent concentration correlated significantly 

(P<0.05) to the ∆R2
* in each plot, although the linear coefficients varied from 4.2 to 11.2 over the 4 patients. 

Discussion: The shape and the peak value of the AIF are key factors for quantitative estimation of perfusion parameters from DSC-MRI. However, true 

quantification of the contrast agent concentration is a challenging problem in DSC-MRI due to susceptibility effects resulting in non-linear partial volume 

and vessel-shifting artefacts. It can be observed that the DCE-driven AIFs show the same ‘pattern’ as the DSC-driven AIFs, but had smaller variance of the 

shape and peak value. This is an indication that the DCE-driven AIF could be a more reliable option for quantifying perfusion properties from DSC-MRI. 

We found a strong linear relation between the contrast agent concentration from DCE and ∆R2*, but the linear coefficients showed large variation, again 

pointing to poor quantification of the AIF by DSC.  

Conclusion: Our findings show that the DCE-driven AIF has the potential to serve as an alternative for the DSC-driven AIFs for quantitative perfusion 

assessment. Also, the semi-automatic method did not prevent erroneous AIF selection from DSC images. 
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Figure 1. The illustration of AIF measurements in one representative 

patient in one particular region. This region was manually selected in the 

DCE images (a) and subsequently projected onto registered DSC images 

(b). Contrast concentration change measured in the DCE and DSC series 

in the voxels from the selected region (c) and the mean curve (d). Blue 

lines are measurements from DSC MRI (left y axis); red lines represent 

measurements from DCE MRI (right y axis). 

 

Figure 2. AIFs measured from five vessels in 4 patients (top to 

bottom) were plotted to test the reproducibility and stability of 

accessing AIFs from DCE images and DSC images. Observe that 

the DCE-driven AIFs (a, c, e, g) showed less variation than the 

DSC-driven AIFs did (b, d, f, h).  

 

Figure 4. Linear regression model 

was used to estimate the linearity 

between the transverse relaxivity 

change (y-axis) and the contrast 

concentration change (x-axis) in one 

vessel which had the highest R-

squared value in the 4 patients (a-d). 

The linear relation is significant but 

with varied linear coefficients in 

different patients. 

Figure 3. Comparison of the AIF obtained with a semi-automatic algorithm (blue 

solid line) and manually derived AIFs. The peak of the manual DCE AIF was 

aligned with the peak of the semi-automatic AIF (a) and the manual DSC AIF (b), 

respectively. Notice that the semi-automatically determined DSC-AIF has higher 

peak value than the manual one (blue dash line). However, it has around twice less 

full width at half maximum than the DCE-driven AIF (red solid line) has. (Only 

AIFs from one vessel of the representative patient were plotted in this graph.) 
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Synopsis:  

In perfusion imaging with arterial spin labeling (ASL), the labeling plane is located further away from the isocenter of the scanner than the imaging volume. This can 

result in offsets in resonance frequencies which can lead to imperfect inversion and hence lower labeling efficiency. In this study, a perfusion phantom is used to 

study the influence of off-resonance on two arterial spin labeling schemes, balanced and unbalanced labelling. The results show that additional F0  determination at 

the labelling plane is the redeeming factor for successful ASL MRI independent of the labeling scheme used. 

Introduction:  

Pseudo-continuous arterial spin labeling (PCASL) enables the non-invasive assessment of brain perfusion by utilizing the inflowing blood as an endogenous tracer. 

The inversion of flowing spins is performed at the level of the neck, typically 90 mm below the center of the brain (the isocenter of the scanner). While the magnetic 

field in the brain region is typically shimmed to provide optimal quality, the labeling plane is often the overlooked or at least unspoken of factor for implementing 

successful ASL measurements. More specifically, off-resonance (ΔF0) effects at the location of the labeling plane are well-known causes of labeling errors leading 

to underestimation or even negative cerebral blood flow measurements. Proposed solutions include multi-phase PCASL1, Optimized PCASL2, unbalanced PCASL3 

and use of a separate B0-map4. The use of the much simpler approach of an additional F0-measurement at the labeling plane, has maybe been used by many, but 

remains rather unspoken of in literature and ASL recommendations. The purpose of this study was to investigate the sensitivity of balanced (bPCASL) and unbalanced 

(ubPCASL) implementations to off-resonance at the labeling plane, and whether this depends on an F0 determination at the labelling plane. 

Methods:  

Images were acquired on a phantom as well as in a healthy female volunteer on a 3T clinical MR system (Achieva, Philips Healthcare, Best, NL) using a 32-channel 

head-coil and body-coil transmission. Two PCASL schemes were compared: 1) bPCASL, where both the control and label conditions have a net average gradient 

(Gmean) over the labeling duration, and 2) ubPCASL3, where the control condition has Gmean,control = 0. Gmean was 0.36 T/m, gradient strength was 5.0 mT/m and the 

RF interval of the Hanning-shaped RF pCASL pulses was 1.21 ms with a flip angle of 27.81 degrees. The total label duration was 1800 ms, post-label delay was 2000 

ms, and images were acquired with a 4-shot 3D GRaSE readout, with 3.75 x 3.75 x 6 mm3 voxels, TR/TE 4250/11 ms, flip angle 80°, 4 background suppression 

pulses, 5 inferior saturation pulses, and scan duration of 04:56 mins. B0 maps were acquired to estimate ΔF0 (Hz) using a delta TE of 1ms, multi-slice FFE read-out 

with 7 slices, 3.75 x 3.75 mm2 voxels, 4 mm slice thickness, TR/TE 650/7 ms, flip angle 80° and scan duration of 02:20 mins. A perfusion phantom (QASPER, Gold 

Standard Phantoms, London, UK) was used to investigate the susceptibility-induced off-resonance effects of pyrolytic graphite sheets secured to the outer tube of the 

‘neck’ region of the phantom as shown in Figure 1. The flow rate was set to 350 mL/min (default). 

The main metric for evaluation was the observed signal difference between control-label, and whether the difference resulted in positive ASL signal. 

Results:  

Figure 1 shows the effects of placing the pyrolytic graphite material on the neck of the phantom. We found that a stack of 4 sheets secured perpendicular to the B0 

field had the strongest effect on the B0 maps. The red profile shown in the magnitude images (along the inflow tube) and B0 maps is plotted in the bottom row to 

illustrate the frequency offset induced by the diamagnetic graphite material for each orientation of the graphite stack of sheets with respect to the B0 field.  

The PCASL results for different conditions are shown in Figure 2 for a single slice/location of the perfusion phantom and in the volunteer. First, when no shimming 

was performed and the same F0 was assumed for labeling as for imaging, that ubPCASL performed well, despite the -246Hz off-resonance at the labeling plane, 

which was not optimal for bPCASL as seen by the negative ASL signal. Next, the additional F0 determination in the labeling plane resulted in positive ASL signal 

in all situations except in the presence of graphite and no shimming in bPCASL. The additional F0 determination proved crucial for successful PCASL imaging.  

The in vivo results are somewhat more subtle but show higher ASL signal when F0 was determined at the labeling plane compared to no additional F0 determination. 

This suggests a greater difference between control and label due to more optimal inversion conditions. 

Discussion:  

Overall, ubPCASL was more robust, but not immune, to off-resonance offsets at the labeling plane. The additional F0 determination greatly improved the ASL signal 

for both bPCASL and ubPCASL schemes. The lower sensitivity to off-resonance of ubPCASL is known from theory as well as experimental evidence5,6. However, 

applying bPCASL in combination with an F0 determination at the labeling plane also enabled robust perfusion imaging across the brain and in the phantom. The 

experiments carried out here were limited by the fact that the perfusion phantom only has a single inflow tube in the centre of the cylinder, which precludes left-right 

comparisons of off-resonance effects on ASL signal. Our findings could guide implementation of PCASL at higher field strengths, but future studies are also needed 

at clinical field-strengths to demonstrate the influence of more realistic off-resonance and non-uniform effects on different ASL implementations. 
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F0 determination at the labeling plane: the neglected factor for successful pCASL perfusion MRI 
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Figure 1. Pyrolytic graphite sheets introduce susceptibility-induced 

off-resonance on B0 maps. A stack of 4 pyrolytic graphite sheets 
photographed in (a) were secured to the neck region of the QASPER 

perfusion phantom (b) where the inflowing perfusate undergoes PCASL 

labeling. (c) (i) shows different orientations of the graphite which have 
different off-resonance effects, (c)(ii) shows the effects of graphite on the 

magnitude images of a B0 map, with graphite perpendicular to the B0 

field having the strongest effect. (c) (iii) shows the off resonance effects 
on the B0 maps in frequencies, and (c) (iv) shows the profiles of the red 

lines shown in (ii-iii). When the graphite was upright and perpendicular 

to the B0 field, the off-resonance effect was the strongest. This is the 

orientation we proceeded with in subsequent experiments with graphite. 

 

 

Figure 2. ASL signal from 

QASPER perfusion 

phantom without and with 

graphite and in vivo. In the 
upper panel, when the F0 

was set the same for the 

labeling and imaging 
volumes, balanced PCASL 

showed degraded ASL signal 

especially when no 
shimming was applied to the 

field. Note the different off-

resonance offsets (ΔF0) of 
the labeling plane for each 

scan at the top. The second 

row shows that unbalanced 

PCASL performed slightly 

better. 

The bottom panel shows the 

effect of the additional F0 
determination at the labeling 

plane, with improved ASL 

signal for balanced PCASL 
and especially for 

unbalanced PCASL (bottom 

row) which performed well 
in all situations, even with 

graphite. Note that the 

presence of graphite resulted 

in a distorted perfusion ring. 
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Synopsis: Detection of lymph node (LN) metastases benefits from using the ultrasmall superparamagnetic particles of iron oxide (USPIO) contrast 

agent Ferumoxtran-10. T2* contrast is commonly used to distinguish between normal LNs (high USPIO uptake, low signal) and metastases (low 

uptake, high signal). T1-weighted imaging may offer complementary information, but is challenging because of the strong T2* effects of the contrast 

agent. This work investigates whether ultrashort echotime (UTE) imaging with stack-of-spirals sequence can mitigate this issue. High-resolution 

USPIO-enhanced T1-weighted UTE of the pelvis was achieved, and T1-mediated signal hyperintensities were indeed observed in LNs in patients 

with prostate cancer. 

Introduction: Detection of pelvic lymph node (LN) metastases can be improved using the ultrasmall superparamagnetic particles of iron oxide 

(USPIO) contrast agent Ferumoxtran-101. The contrast agent accumulates in healthy lymph nodes by uptake by cells of the immune system, while in 

metastatic LNs particle accumulation is much lower. USPIO-enhanced MRI for detection of LN metastases is primarily based on T2*w imaging, in 

which LNs with high USPIO uptake exhibit signal loss while LNs with low uptake retain a high signal intensity. T1-weighted imaging may offer 

complementary information to T2*-weighted imaging in this context, as the R1 and R2* relaxivities of Ferumoxtran-10 differ in their dependency on 

the microscopic distribution of the USPIO nanoparticles2. Thus, T1w imaging may potentially aid in improving the specificity of USPIO enhanced 

LN diagnostics. However, obtaining unambiguous USPIO-enhanced T1 contrast is challenging using conventional echo-type sequences, because of 

the strong T2* effect of the contrast agent. Ultrashort echo time (UTE)-type sequences may mitigate this issue by minimizing T2* relaxation effects. 

Before any additional value of T1w UTE for LN diagnostics can be investigated, the feasibility of obtaining the desired contrast at sufficiently high 

resolution3 and image quality must be established. Therefore, the purpose of this study was to assess whether T1-mediated signal enhancement due 

to USPIO uptake can be observed in pelvic lymph nodes in prostate cancer patients at high isotropic spatial resolution using a stack-of-spirals UTE 

sequence. 

Methods: All measurements were performed on a 3T system (MAGNETOM PrismaFit, Siemens Healthcare, Erlangen, Germany) with standard 

body and spine phased array coils. The prototypical UTE sequence used a stack-of-spirals k-space trajectory with non-selective excitation and 

variable-duration slice encoding to minimize the effect of T2* decay4,5. We optimized the acquisition protocol in 2 healthy male volunteers (age 30 

and 44 years) without USPIO infusion, resulting in the following parameters: coronal slab orientation, TR/TE = 4.3/0.05ms, flip angle 15°, FOV 400 

mm, matrix 512, 432 spiral interleaves (corresponding to an undersampling factor of 2) with linear reordering, spiral duration 1160 s, stack of 256 

partitions interpolated to 320, acquisition time 8 minutes. The sequence looped over partitions and spiral angles in its inner and outer loops, 

respectively. Patients with prostate cancer scheduled for USPIO-enhanced MRI as part of their clinical diagnostic workup were enrolled. Stack-of-

spirals UTE was added to the end of their clinical examination, which also included a 3D T1-weighted GRE sequence and a 3D T2*-weighted water-

selective MEDIC sequence, both at 0.73 mm isotropic resolution. UTE images were reconstructed offline using the L1-ESPIRiT implementation of 

the BART toolbox6, employing manual coil selection to reduce streaking artifacts originating from structures outside the FOV. Images were assessed 

on the presence of signal hyperintensity in LNs, and scored on image quality, visibility of LNs and blood vessels, and artifacts on 5-point scales by a 

radiologist and a physicist in consensus, both with 7 years of experience in USPIO-enhanced pelvic MRI. 

Results: After protocol optimization, four male patients with prostate cancer (age 54-75 years) were included. One of these had had an intraprostatic 

injection of superparamagnetic iron oxide (SPIO) particles 3 weeks prior to USPIO infusion, and one had surgical clips in the area of interest. 

Imaging was successful in all 4 patients. Image quality was rated good to excellent in all patients (Table 1, Figure 1), with excellent and strongly 

hyperintense depiction of the vasculature and high SNR. Although the overall visibility of LNs varied between patients, T1-mediated 

hyperintensities were observed in at least 1 LN in all patients (Figure 2). Some variations in contrast behavior in T2*-weighted MEDIC and T1-

weighted UTE were observed between LNs (Figure 2). Artifacts due to respiratory or bowel motion, streaks, or foldover into the pelvic region were 

minor (Figure 3). Blooming artifacts were observed in the patients with intraprostatic SPIO injection and surgical clips, but not in the other patients. 

Chemical shift related artifacts were observed at the borders between watery and lipid tissues (e.g. between muscle and surrounding lipid tissue, 

Figure 3). 

Discussion: This work shows that high-resolution T1w USPIO-enhanced MRI of pelvic LNs is feasible in patients with prostate cancer, and that 

intranodal T1-mediated signal enhancement can indeed be observed. The observed variations in contrast behavior between T2*-weighted and T1-

weighted UTE support the hypothesis that T1w imaging may provide complementary information, but larger studies are needed to investigate this 

further. The fat-water artifact observed at the boundary between muscle and lipid tissue may mimic T1-induced signal enhancement at the boundary 

between the watery LNs and surrounding lipid tissue. This may be mitigated by using fat suppression techniques, or by decreasing the duration of the 

spiral readouts. Both would likely lead to an increase in scanning time; however, the high SNR obtained suggests that further acceleration of the 

acquisition may be possible. 

Conclusions: T1-mediated signal hyperintensities can be observed within pelvic LNs of patients post-USPIO infusion using a stack-of-spirals UTE 

sequence, at 0.8mm isotropic resolution in less than 10 minutes. Although further optimization is warranted, this opens the possibility of 

investigating the possible additional value of T1w UTE imaging for the diagnosis of LN metastases. 
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 Median Range 

Image Quality   

Overall image quality 4.5 4-5 
Visibility of lymph nodes 3.0 2-5 
Visibility of blood vessels 5.0 5-5 
SNR 4.0 4-5 
Artifacts   

Respiratory / intestinal motion 1.5 1-2 
Streaks 2.0 1-2 
Blooming (susceptibility) 3.5 1-4 
Fold-over 1.0 1-1 

Table 1: Overview of image quality and artifact measures of 4 patients with prostate cancer scanned with T1w USPIO-enhanced stack-of-spirals UTE. Scale used for image quality measures: 1 - not 

evaluable; 2 - poor; 3 - moderate; 4 - good; 5 – excellent. Scale used for artifacts: 1 - absent; 2 - minimal; 3 - moderate; 4 - significant ; 5 – severe. 

 

Figure 1: Multi-planar reformats in 3 orthogonal orientations of USPIO-enhanced stack-of-spirals UTE with 0.8 mm isotropic voxels in a 54-year-old patient with prostate cancer, showing the high image 

quality attainable with this sequence and the strong T1-induced hyperintensity of the blood vessels. 

 

Figure 2: Examples of USPIO-induced T1 signal enhancement in LNs in patients with prostate cancer. Top row: coronal T1w GRE and T2*w MEDIC show strong USPIO-induced signal loss in 2 para-

iliacal lymph nodes in a 54-y.o. patient with prostate cancer, while T1w UTE shows signal enhancement in these nodes. Middle row: para-iliacal LN in the same patient retaining some signal on T1w GRE 

and T2*w MEDIC, while showing strong hyperintensity on T1w UTE. Bottom row: para-rectal lymph node showing strong signal loss on transverse T1w GRE and T2*w MEDIC, while showing 

hyperintensity on T1w UTE. 

 

Figure 3: Examples of observed artifacts. A: Susceptibility-induced blooming around the prostate (arrowheads) and a nearby LN (arrow) due to SPIOs injected intraprostatically 3 weeks prior to USPIO 

infusion; B: Respiratory and bowel motion (arrowheads) and blooming due to surgical clips; C: Water-fat signal interference at interface between muscle and adipose tissue (arrows). 
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High temporal-resolution MRI during mild-cold exposure enables the assessment of brown adipose tissue 
with a low inter-image variability 

 

 

Synopsis: Brown adipose tissue (BAT) is considered to be a potential therapeutic target against cardiometabolic diseases. Activated BAT combusts intracellular fatty acids leading to a reduction in fat 

fraction . Both cold exposure and pharmacological stimuli can activate BAT, but the short-term dynamics of BAT activation are unknown. To assess supraclavicular BAT fat fraction dynamics during cold-

exposure, we developed a 1-minute-time-resolution MRI protocol using breath-holds and co-registration to minimize motion-artefacts. We demonstrated the validity and feasibility of our image analysis 

method, and found an inter-image variability of less than 0.1% fat fraction. 

Introduction 

Brown adipose tissue (BAT) is involved in energy metabolism by combusting glucose and fatty acids to produce heat. BAT activation is a potential treatment against cardiometabolic diseases1,2. Cold exposure 

is the most established physiological stimulus to activate BAT very rapidly3, but  pharmacological alternatives have also been proposed4. BAT activity is usually indirectly quantified via glucose uptake using 
[18F]fluorodeoxglucose (FDG)-PET-CT, but this modality has a poor temporal resolution due to radiation exposure5. MRI of the supraclavicular BAT region (scBAT) is a promising radiation-free alternative6. 

Most scBAT MRI studies have either used pre- and post-cooling assessments of the MRI-derived fat fraction (FF) or studied FF dynamics at a low temporal resolution7-11. This does not provide sufficient 

insights into the short-term dynamics of BAT activation, which may be needed for assessing the kinetics of  BAT stimuli. Here, we developed an MRI protocol with a high temporal resolution for assessing 

scBAT FF, minimized variability due to breathing by applying non-rigid image registration, and applied these in a cold exposure study. 

Methods 

Ten healthy volunteers (age: 24.8±3.0 years; BMI: 21.2±2.1kg/m2) underwent a standardized cooling procedure for BAT activation using a water-circulating blanket. After 20 minutes at thermoneutrality 
(32°C), the temperature was set to 18°C for one hour. Images were acquired at 3T using a 16-channel anterior and 12-channel posterior array and a 16-channel head-and-neck coil. Scans were acquired during 

the last 10 minutes of thermoneutrality and for 60 minutes during cooling using a 3D gradient-echo 12-point Dixon sequence: TR/TE1/ ΔTE/FA/resolution/FOV/breath-hold duration=12ms/1.12ms/ 

0.87ms/3°/2.1 mm isotropic/400x×229×134 mm3/16 s, mDIXONQuant and scanner reconstructions. The acquisition time per scan was 1.03 mins. 

For analysis, we co-registered first-echo magnitude images of each dynamic to the first thermoneutral scan (reference scan) using Elastix12 (Fig. 1). FF of the scBAT depot was obtained from ROIs, which 
were coarsely delineated on the reference scan and using a mutual FF thresholding approach, wherein voxels were included if their FF was above 30% in both the reference scan and in the registered dynamic 

(Fig. 1). Voxel-wise FF differences between the reference scan and each dynamic i: ΔFFi (x,y,z) = FFi (x,y,z) - FFTN1 (x,y,z) were calculated and averaged over the ROI. ROIs were also drawn in the trapezius 

muscle for reference. 

The validity of the co-registration was assessed for each subject by registering the reference scan to each dynamic, and applying the inverse transform to deform the registered reference scan back to its 
original coordinates, and then analyzing the voxel-wise FF overlap in the scBAT area. The feasibility of the registration was determined by assessing scBAT FF dynamics and ROI sizes between registered 

and non-registered data. Subsequently, we compared the scBAT FF dynamics to the FF dynamics obtained in the trapezius muscle. The validity, feasibility and reference tissue analyses were evaluated by 

quantifying the intra-individual variability along the FF dynamics. This was done for all subjects by calculating a moving average using a [-3,3] time window along the FF dynamics, after which the mean 
squared error (MSE) of the residuals was calculated between the moving average and the FF data. In the feasibility analysis, we also used the moving average method to calculate the MSE for averaged 

scBAT FF dynamics of registered and non-registered data as a measure for the inter-individual variability. 

Results 

All subjects were able to adhere to the protocol. The validation analysis resulted in small FF differences over time (MSE=0.003%±0.002%; Fig. 2A). The feasibility analysis resulted in lower MSE values for 

registered scBAT FF dynamics compared to non-registered data (MSE: 0.09%±0.08% versus MSE:0.14%±0.12%; Fig. 2B-C). scBAT ROIs were on average larger for registered data compared to non-

registered data (8259±3272 versus 7571±2378 voxels).  The MSE values for the averaged scBAT FF dynamics were 0.008% and 0.02% for registered and non-registered data, respectively. scBAT FF showed 

a gradual decrease in response to mild-cooling, whereas no response was seen in the trapezius muscle (MSE=0.02%±0.02%; Fig. 3). 

Discussion 

Our data show a high registration accuracy, as evidenced by the low variability in the validation analysis. Also, the registration feasibility showed a lower variability along the FF dynamics in registered 

versus non-registered data. This difference is likely the result of motion-induced variation, which increases spatial mismatches between the dynamic image and the reference image, and decreases the number 

of co-located voxels with a FF higher than 30%. On average, registered scBAT FF dynamics showed a 2.5 lower inter-individual variability compared to non-registered FF dynamics. The absence of any 
dynamic FF pattern in skeletal muscle indicates that the scBAT FF response is not influenced by temporal changes that may be induced by the scanner’s hardware. In comparison to reported scBAT FF 

changes in response to cold exposure in literature (−1.6%7, -2.9%9), we found relatively small (~ -0.5%) and slowly changing FF dynamics in response to mild-cooling. This is likely caused by differences 

in the cooling procedure, such as cooling garments, cooling strength and duration. The temporal resolution may therefore be increased or decreased since the temporal evolution of scBAT FF dynamics may 

differ per stimulus. 

Conclusion 

We showed the feasibility of obtaining 1-minute-resolution data of scBAT using breath-holds during cooling in healthy subjects and we demonstrated the validity and feasibility of our MRI protocol.  
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Figure 1. 

The first thermoneutral scan was used as a reference image, and all subsequent dynamic scans were co-registered to the first scan. First echo magnitude images were used for co-

registration and the resulting transformation matrix was used to deform the FF map of each dynamic to match the image coordinates of the first thermoneutral scan. ROIs were only 

drawn on the first thermoneutral scan and voxels below 30% fat were excluded in both fixed and dynamic scans to avoid inclusion of non-fatty tissue for scBAT, whereas no thresholds 

were used for muscle. 
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Figure 2. Fat fraction changes (%) for the registration validation (A), non-registered data (B) and registered data (C). scBAT FF changes above 1% are shown in red in (A). Image 

overlap between the first thermoneutral (reference) scan and the last dynamic are shown for B and C, where the reference scan and the last dynamic are shown in blue and orange. Red 

denotes thermoneutrality. The mean squared error and the number of voxels in the scBAT volume are reported.  

 

 

Figure 3. Fat fraction differences from registered data plotted as a function of time for the trapezius muscle. The red-shaded area indicates the thermoneutral period and the mean 

squared error is reported.  
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Comprehensive 3D quantitative transient response MRI 
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Synopsis: Unlike multi-parametric methods as MR Fingerprinting and quantitative transient imaging we present a quantitative MRI method based on the transient response without variation 
of experimental parameters (FA…). Our method is based on the exact solution of the recursive equation for the magnetization along an acquisition train. Based on this analytical approach we 
determine the requirements for the features and parameters of a repeated acquisition block to allow simultaneous estimation of experimental (B0, B1) and intrinsic (PD, T1, T2) parameters. 
The feasibility of the technique on clinical scanners is demonstrated by acquiring a comprehensive set of 3D in vivo parametric maps. 

 

Introduction 
Several transient-response-based quantitative methods were proposed in recent years1,2. These methods rely on specific variation of acquisition parameters such as excitation flip angle and 
repetition time along the train of excitation pulses. With such variations, the time dependent Bloch equation, as well as its discretized version describing the signal evolution in an acquisition 
train, do not have a closed-form analytical solution. Hence, these methods have to resort to iterative forward modelling or dictionary matching for parameter estimation and sequence 
optimization. In contrast to these methods, we propose a constant propagator (defined as the cumulative effect of the acquisition block on the magnetization as a linear operator) along the echo 
train in order to enable an exact analytical description of the signal3. The explicit analytical expression of the signal evolution reveals critical conceptual elements in the experimental design: 1) 
enhance or suppress sensitivity to intrinsic and experimental parameters; 2) avoid potential loss of information in the signal evolution; and 3) species can be identified by their unique signal 
behaviour. We demonstrate this design process of the propagator, that ultimately allows a comprehensive parameter estimation in the transient phase, including experimental confounding 
quantities such as B0 and B1. We propose a novel, balanced free precession sequence that avoids banding artefacts. We demonstrate the method’s sensitivity to intrinsic and experimental 
parameters with phantoms and the its applicability of the technique in the clinical settings by 3D in vivo acquisition and parameter estimation. 

Methods 
Theoretical foundations 
We describe the evolution of the magnetisation mn for a species characterised by intrinsic and experimental parameters with the Putzer's algorithm4,5. This allows an analytical and always real-
valued expression for μn = mn - msteadystate without the diagonalization of the propagator6,7, instead using its eigenvalues and avoiding its often-complex eigenvectors3: 

 
μn = ρn·sin(nφ)·n1 + ρn·cos(nφ)·n2 + ηn·n3, 

 
where the real-valued normal mode (not eigenvectors) vectors are determined by the initial state, the propagator and the eigenvalues ρ·eiφ, ρ·eiφ and η. A generally valid expression for the signal 
in the quadrature complex notation follows: sn = a·ρn·ei(nφ+δ) + b·ηn·eiξ 

Propagator design for parametric mapping 
The goal of the propagator design in parametric mapping is to produce a signal evolution that allows parameter estimation. There are three main aspects to consider: 1. The effect of 
B0 inhomogeneity is suppressed; 2. The signal evolution carries full information; 3. Species can be identified by their unique signal evolution. Our choice of for a propagator that satisfies these 
requirements consists of four excitations with alternating phases 0, π/2, π/2, 0 with flip angles 30, 175, 30, 175 degrees. Requirement 2. is provided by the different phases in the excitation 
scheme. Requirements 1. and 3. are explained and demonstrated in Kotek et al.3. 

 
Implementation on a clinical scanner, acquisition and parameter estimation 
The acquisition was done in-vivo and on a phantom (Caliber MRI System Phantom Lite) by 3D stack of spirals balanced GRE: 22 slices, 6mm thickness, stack of spirals: 32 arms, 1024 readout 
points, FoV 25 and 30 for in-vivo and phantom acquisition. Image reconstruction was done with a non-uniform FFT with density compensation8, and parameter estimation through the least-
squares fitting of the single-species signal model. 

Results 
The in vivo parametric maps produced with our design are depicted in Figure 1. The T2 values are in good agreement of literature references, while the T1 maps show systematic 
underestimation of T1. In contrast with the in vivo results, results from phantoms show good agreement between our derived T1 and T2 and reference values as shown in Figure 2 and 3. 

Discussion 
We approached transient state quantitative imaging from a simple algebraic perspective. We challenged the necessity of flip angle or repetition time variation. We investigated if in the case of a 
constant propagator the signal evolution contains sufficient and exploitable information about intrinsic and experimental parameters. This is the only obvious case when there is a closed-form 
analytical solution to the Bloch equation. We identified conceptual requirements for the propagator through simple algebraic considerations. The design concept resulted in the following: 1. a 
novel balanced free precession technique that produces banding artefact free transient state and steady state images; 2. A comprehensive set of parametric maps: T1, T2, PD, B0, B1. Here we focus 
mainly on the conceptual details of our method and its direct implementation. For applicability in a clinical workflow further steps are necessary towards acceleration of the acquisition. 
Furthermore, the underestimation of T1 from in vivo data requires further investigation to find confounding biologically relevant processes. The technique can be developed further where such 
processes are enhanced or suppressed by the design of the propagator. 

Conclusion 
The analytical description provided insight to a proper experimental design that otherwise was not obvious or available when a simulation-based optimization is performed. Among transient 
state quantitative imaging methods, conceptually and also technically the simplest case is with constant propagator (the one of two cases with analytical solution). Here we demonstrated with 
an implementation in clinical settings, that no variation of the experimental parameters is necessary in multi-parametric transient response imaging. 
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Figure 1. In vivo parametric maps from volunteer data. a: B0 , b: B1, c: PD, d: T1, e: T2. Acquisition parameters: 24 channel head coil, 30x-175y-30y-175x scheme, TR=17ms, 6.3mm slice thickness, 
22 slices, FoV = 25 cm, bw = 125, acquisition train length 60, 32 spiral arms, 1024 readout points per arm. Despite the fully balanced free precession acquisition sequence, no banding artefacts 
are present due to the composite operator consisting of excitations along various axes. The T1and T2 maps are free of B0 or B 

1 inaccuracies. 

 

 

 

Figure 2. Parametric maps with the Calibre System Phantom Lite - T1 contrast layer, a: B0 , b: B1, c: PD, d: T1, e: T2. Acquisition parameters are the same as in the in vivo acquisition except the FoV 
= 30 cm. The B1 map shows a similar pattern to the B0 map, emphasized only by the fine scale of the colormap. The ringing pattern on the PD map is due to the limited resolution of the 
acquisition. Despite the usual strong B0 inhomogeneity in the frontal area, it shows only a minor effect on PD, T1 and T2 maps. Despite showing good contrast in vivo, the T1 values are 
systematically underestimated. 

 

 

Figure 3. The proposed method’s T1 and T2 values of the Calibre System Phantom Lite are compared to the reference values. The reference values were determined by standard inversion 
recovery and echo time variation SE methods. The numbers indicate the phantom’s samples. Both T1 and T2 values are in good agreement with the reference values. Unlike in the in vivo results, 
T1 is not underestimated. 
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Synopsis: Magnetic resonance elastography (MRE) allows for non-invasive determination of pancreatic visco-elastic properties in four consecutive breath-holds. The aim of this study 

was to develop and test a single breath-hold MRE acquisition accelerated using prospective undersampling and compressed sensing (CS) reconstruction. Testing was done on a 

retrospective undersampled phantom dataset and in-vivo. These showed that CS accelerated (R< 8.7), single breath-hold MRE is feasible without hampering visco-elastic reconstruction 

in tissues with low shear stiffness (|G*|<1.6kPa). Further research is necessary to guarantee accuracy of the measured shear stiffness, notably for high stiffness tissues such as tumors, 

and at higher acceleration factors.  

Introduction 

Magnetic resonance elastography (MRE) allows for non-invasive determination of tissue visco-elastic properties, which differ for healthy and diseased tissues. Longitudinal changes 

in tissue stiffness in the course of pancreatitis,  endocrine dysfunction or pancreatic cancer could reveal new insights in the disease pathophysiology[1]. However, assessing the pancreas 

with MRE remains challenging due to its small size, elongated shape, and central abdominal location. The quantitative accuracy of MRE in small structures depends on the local stability 

of the tissue being imaged over all wave-offsets and motion-encoding directions. However, current pancreatic MRE requires four consecutive (16s) breath-holds[2]. These may introduce 

errors in pancreas location, limit spatial and temporal resolution, and can be particularly uncomfortable for patients.  

The aim of this study was to develop and test a single breath-hold MRE acquisition accelerated using prospective undersampling and compressed sensing (CS) reconstruction in the 

pancreas. 

Methods 

We modified the 3D Ristretto GRE-MRE acquisition to accommodate for compressed sensing acceleration[3,4]. Feasibility of CS-accelerated MRE was first established by retrospective 

undersampling (factors:R=0-15) and reconstruction of a 3D MRE dataset of a CIRS phantom with inclusions (CIRS,Inc.,Norfolk,USA). Data was acquired by Guenthner et al. using 

36Hz vibration frequency and eight wave-phase offsets in 14 slices (FOV:192x156x42mm)[3]. Scan parameters are reported in Figure 1a. 

In-vivo testing was performed on six healthy volunteers (female=6, mean age=27±3 years). A gravitational transducer [5] with a 3D-printed curved polyactic-plate was strapped to the 

right flank at the level of the pancreas head (Figure.1c). High-resolution T2-weighted images were made for anatomical reference. MRE acquisitions were performed using 40Hz 

vibration frequency, nine slices (FOV:336x192x27mm) and five wave-phase offsets. Six consecutive pancreatic MRE scans were performed: (I)standard Multi-Slice (MS), (II)3D 

SENSE-accelerated four breath-hold acquisition, (III)3D CS-accelerated four breath-hold acquisition and (IV-VI)three 3D CS-accelerated single breath-hold acquisitions. Scan 

parameters are reported in Figure 1a.  

Incoherent undersampling was achieved using variable-density Poisson disks with half-scan in both ky (67%) and kz (89%) directions(Figure.1b). Five different undersampling patterns 

with different undersampling factors (R=3.6,8.7,9.8,13.4) were used for each wave-phase offset and were repeated for each encoding direction. For CS acquisitions, reconstruction was 

performed offline using ReconFrame (Gyrotools,Zurich,Switzerland) in MATLAB (MathWorks,Natick,MA,USA) together with the Berkeley Acquisition Advanced Reconstruction 

Toolbox (BART) using total variation sparsifying transform in the wave-offset dimension (=0.001, 20 iterations)[6,7,8].  

Phantom post-processing was performed using MATLAB. The shear stiffness of each inclusion and background was calculated and compared to the non-accelerated stiffness. In-vivo 

MRE post-processing was performed using dedicated software(ROOT,KIR). Phase data are unwrapped and smoothed before 3D transformation using a 3D Blackman-Harris window. 

The shear wave displacement was calculated per voxel and visco-elastic parameters were extracted with a finite element method. Shear wave speed (SWS) and shear stiffness (|G*|) 

was calculated by manually drawn region-of-interest over the pancreatic head and liver on MRE magnitude images guided by anatomical high-resolution T2-weighted images.  

Mean SWS, |G*| and the nonlinearity (ratio of the second harmonic over the first harmonic) in both the pancreas head and liver were analyzed, with 3D-SENSE-MRE allocated as index 

test for CS. Statistical analysis was done using repeated measures ANOVA and pairwise comparison with a Bonferroni correction(p<.05) for SWS and nonlinearity parameters of the 

pancreas and liver.  

Results 

Mean |G*|and example elastograms of the phantom data are shown in Figure 2. In-vivo examples of SWS-maps in the pancreas are shown in Figure 3. The mean SWS, |G*| and 

nonlinearity for the pancreas and liver are given in Figure 4. Mean SWS and nonlinearity of each method for the pancreas and liver are shown in Figure 5. Repeated measures ANOVA 

showed no significant differences in SWS overall(f=5/1,p=0.07). Exploratory pairwise comparison showed significant difference between mean SWS of MS and CS13.4(p=.03) in the 

pancreas and nonlinearity in the liver between CS3.6 and CS8.7(p=.02). 

Discussion 

Phantom retrospective undersampling showed accurate results for low stiffness inclusions and background (|G*|<1.6kPa) up to an acceleration factor of 15 (Figure.2). However, for the 

two stiff inclusion the apparent stiffness deviated from non-accelerated R0 values, with underestimation increasing for higher acceleration factors. The relative low mechanical frequency 

(and hence long wavelength) could explain this disparity[9].  

CS-accelerated MRE gave comparable stiffness values in-vivo up to an acceleration factor of 8.7. The nonlinearity showed no significant difference between all scans in the pancreas, 

indicating that higher acceleration does not significantly hamper visco-elastic reconstruction. However, accuracy of MRE inversion is only guaranteed for a nonlinearity below 50%, 

therefore CS acceleration of 13.4 (nonlinearity=50.5%) could be considered borderline acceptable.  

Liver nonlinearity shows a significant difference between CS3.6 and CS8.7, however, this is not seen for higher acceleration. This could be caused by the large spread observed at 

CS13.4. A large spread in quality parameters, such as nonlinearity, could indicate loss in accuracy and thereby reproducibility. Additionally, while acceleration of CS=8.7 displayed no 

difference in SWS and nonlinearity compared to MS, the breath-hold duration (20s) may be too long for some patients.  

Conclusion 

Phantom and in-vivo testing shows that compressed sensing accelerated, single breath-hold MRE is feasible without hampering visco-elastic reconstruction in tissues with low shear 

stiffness (|G*|<1.6kPa). Further research is necessary to guarantee accuracy of the measured shear stiffness, notably for high stiffness tissues such as tumors, and at higher acceleration 

factors.  
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Figure 1 A) Imaging parameters across undersampled datasets for in-vivo measurements. Top 
table shows imaging parameters for both the phantom acquisition and in-vivo acquisition. B) 

Example Poisson disk prospective undersampling patterns for compressed sensing accelerated 

MRE scans, shown for all individual wave-phase offsets. Undersampling through halfscan 

(middle: ky=67%; right: ky=67% and kz=89%) is also used. C) MRE transducer placement. 

Figure 2 top: Retrospective undersampling phantom magnitude data with four inclusions and 
corresponding elastograms for undersampling patterns. Bottom left Reconstructed shear stiffness as a 

function of undersampling factor. Bottom right: Difference between measured shear stiffness and the 

known shear stiffness of the inclusion.  

 

 

 

Figure 3 Shear wave speed map (SWS) of all methods of 
the pancreas and liver overlayed on high resolution T2-

weighted images for anatomical reference. 

 

 

 

Figure 4 Table showing the mean shear wave speed 

(SWS), shear stiffness (|G*|) and nonlinearity for the 

pancreas and liver. All methods are analyzed and reported.    

 

 

 

 

Figure 5 Mean shear wave speed (top) of the pancreas and 

liver with the corresponding mean nonlinearity (bottom). 
There is a significant difference between the pancreatic 

SWS of MS and CS13.4 and the hepatic nonlinearity of 

CS3.6 and CS8.7. 
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Synopsis 

Pancreas magnetic resonance elastography (MRE) allows non-invasive estimation of tissue stiffness for multiple pathophysiological diseases. MRE reproducibility and the effect of 

bowel-preparation (butylscopolaminebromide and drinking water) for increased MRE data quality were assessed for the pancreas. Shear wave speed and MRE quality were determined 

for the pancreas, liver and kidneys. Intrasession and intersession reproducibility showed a coefficient-of-variation of 6.59% and 13.10%. Repeated measures ANOVA showed no 

significant difference in SWS of all organs (f=3/11,p>0.05). Bowel-preparation methods for pancreatic MRE do not increase MRE quality. Drinking water increases the MRE quality 

for kidneys and liver whilst not altering the measured SWS.  

Introduction  

Magnetic resonance elastography (MRE) in the pancreas has the potential to elucidate multiple pancreatic pathologies[1], such as pancreatic adenocarcinoma. To characterize tumor 

microenvironment and estimate stromal disposition in the pancreas a high quality and reproducible MRE is imperative. However, its central abdominal location presents two potential 

issues as bowel movement may interfere with the shear wave resulting in low quality MRE data while the presence of gas in the gastrointestinal tract surrounding the pancreas inhibits 

shear wave propagation.  

To address these challenges, we hypothesize the effects of two MRE patient preparation methods: 1) drinking 0.5L of water decreases the amount of air in the stomach and increases 

wave penetration, and 2) using butylscopolaminebromide (Buscopan:20mg/ml,Eureco-PharmaB.V) increases MRE quality through inhibition of smooth-muscle contraction. The aim 

of this study was to assess test-retest of reproducibility of non-prepared pancreatic MRE and to see if patient preparation improves MRE quality.  

Methods  

MRE reproducibility of the pancreas was studied in a group of 10 healthy volunteers (♀=6,mean age=26±3years). Both intrasession and intersession reproducibility were investigated 

(figure.1a). Different subject preparations were evaluated in 15 healthy volunteers (♀=7,mean age=41±16years), following the preparation steps as indicated in Figure 1b; No preparation 

(TOMO1), Buscopan (TOMO2), water (TOMO3), water and Buscopan (TOMO4). Buscopan was injected via IV to temporarily (~4min) decrease bowel movement.  

All scanning was performed at 3.0T (Ingenia,Philips,Best,Netherlands) in combination with body transmit, anterior, and posterior receive coils. Volunteers were positioned prone, head 

first. Four compressed-air driven MRE-transducers were placed on the lower thoracic cage, two anterior and two posterior (figure.1d)[2]. Elastography images were acquired with a 

multi-frequency free-breathing SE-EPI sequence at four frequencies (MREfreq=30,40,50,60Hz)[2]. Sequence parameters were: nslices=29, voxelsize=2.7x2.7x5mm , SENSE=2.5, 

TE/TR=55/2400ms, number of MRE-offsets=8, MEGdir=3, and acquisition-time≈4 min. All subjects fasted four hours prior to scanning.  

Post-processing was accomplished using the kMDEV inversion algorithm resulting in shear-wave-speed (SWS) maps of the abdomen[3]. Volumes-of-interest were manually drawn on 

the mean magnitude images to assess the mean pancreatic SWS, along with the kidneys and liver to assess influence on other organs. Strain-SNR and attenuation of the shear wave 

were evaluated as quality parameters[4].  

The reproducibility and repeatability of TOMO1 was assessed by Bland-Altman plots. Repeated measures ANOVA and pairwise comparison (p<.05). were used to determine intra-

subject variability for all parameters for the preparation methods (SPSS,Statistics,Version26,IBM,USA). The differences in pancreatic SWS throughout preparation methods were 

compared to the within- and between-session reproducibility. 

Results  

Intrasession and intersession reproducibility are shown using Bland-Altman plots in Figure 2, with an mean SWS of 1.10±0.10m/s overall and coefficient-of-variation: 

CVintrasession=6.59% and CVintersession=13.10%. Figure 3 shows magnitude images and corresponding elastograms for a single volunteer over all preparation scans. Repeated measures 

ANOVA showed no significant difference for SWS of all organs (f=3/11,p>.05). However, exploratory pairwise comparison for the pancreas showed significant difference between 

TOMO1 and TOMO2 (p=.005). Mean SWS of the pancreas were 1.13±0.26, 1.19±0.28, 1.15±0.27 and 1.18±0.27m/s for TOMO1,2,3 and 4, respectively (figure.4). Strain-SNR and 

attenuation showed no significant differences between different scans for the pancreas (figure.5). However, there is a difference between before and after drinking water in the kidneys 

and liver, with the exception between TOMO2 and TOMO4 in the liver. There was no significant difference in attenuation of the shear wave for all scans. 

Discussion  

Mean SWS in the pancreas were in line with previously published literature[2]. Pairwise comparison showed that there is a significant difference between the SWS in the pancreas of 

TOMO1 and TOMO2. Buscopan injection increases the mean SWS of the pancreas compared to non-prepared-MRE. However, this difference was not observed between other 

preparation scans or in the kidneys and liver. The pancreas is surrounded by the hepatopancreatic ampulla, which is a smooth-muscle sphincter controlling inflow and inhibiting reflux 

of duodenal substances into the ampulla. Buscopan could have an influence on the ductal pressure and thereby apparent SWS, because it inhibits spontaneous smooth-muscle activity 

and thereby the hepatopancreatic ampulla. Nevertheless, differences observed between the non-prepared-MRE and Buscopan SWS is within the limits of the repeatability, indicating 

that this effect is negligible.  

Quality parameters showed no significant difference in the pancreas, suggesting that there is no increased wave penetration when drinking 0.5L of water or decrease of shear-wave 

interference using Buscopan. However, there is an observed difference in the strain-SNR in the kidney and liver. For the kidneys there seems a difference between before and after 

drinking water, with an increase in strain-SNR after drinking water. In the liver this is also observed, except between TOMO2 and TOMO4. Previous work showed similar results for 

the mean SWS in the pancreas (1.20±0.12m/s) and no change in SWS of the pancreas, liver and kidney at different hydration states (an hour after drinking water)[2].  

Conclusion  

Bowel-preparation methods for pancreatic MRE does not increase MRE quality. Repeated measures ANOVA showed no significant difference in SWS for all organs(f=3/11,p>0.05). 

Exploratory pairwise comparison for the pancreas showed significant difference between TOMO1 and TOMO2(p=.005). This could be due to Buscopan having an effect on the 

hepatopancreatic ampulla. However, this effect is within the limits of the repeatability of the non-prepared-MRE and therefore clinically irrelevant. Drinking water increases the MRE 

quality for kidneys and liver whilst not altering the measured SWS.  
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Figure 1 A) To assess intrasession and 

intersession reproducibility the MRE scan is 
completed thrice, where the volunteer is 

taken out of the scanner after the second 

MRE scan. High-resolution T2 scans are 
done for anatomical reference. B and C) 

During the preparation study an MRE scan is 

first performed without any additional 
preparations after which Buscopan is 

injected through an IV with the volunteer 

stationary on the table. In between the 
volunteer is asked to drink ½ a liter of water 

and the same protocol is followed as in the 

first half of the scan session. D) MRE set-up  

 

 

  

Figure 2 Bland-Altman analysis of the mean shear wave speed 
of the pancreas within- and between session reproducibility. 

95% Limits of agreement were [-0.088 0.092], [-0.18 0.20] and 

for intrasession and intersession reproducibility respectively. 
Coefficients of variation were CVintrasession=6.59% and 

CVintersession=13.10%. 

Figure 5 Mean attenuation (top) and strain-SNR (bottom) in the pancreas, kidney, and liver. There is no significant difference in 
attenuation in all three organs between all preparation MRE scans. There is no significant difference between the strain-SNR in the 

pancreas. However, there is a difference between before and after drinking water in the kidneys and liver (except between TOMO2 

and 4 in the liver). (**p<.01,***p<0.005). 

 

 

 

 

Figure 3 Anatomical magnitude images 

and corresponding elastograms of a 
representative volunteer for all 

preparation methods. The manually 

drawn volumes-of-interest of the 
pancreas are overlayed on the magnitude 

images. The white arrows show the 

filled stomach after drinking water. The 
red arrows represent the location of the 

pancreas on the elastogram. 

 

 

 

Figure 4 Shear wave speed for each 

subject and Bowel-preparation method 
across abdominal organs. Significant 

differences were only observed in the 

pancreas between the nonprepared-MRE 
and the use of Buscopan (TOMO1 and 

TOMO2 respectively) (p=.005).  
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Synopsis: Spin-lock (SL) dispersion is a promising biomarker for the assessment of myocardial infarction. However, at 3T, the required range of T1⍴ maps 

acquired at different amplitudes suffers from specific absorption rate (SAR) limitations and off-resonance artifacts. Relaxation Along a Fictitious Field (RAFF) is 

an alternative to SL preparations with lower SAR requirements while still sampling relaxation in the rotating frame. Thus, a single breath-hold simultaneous TRAFF2 

and T2 mapping sequence is proposed for SL dispersion mapping at 3T. High visual quality maps and accurate T2, TRAFF2, and SL dispersion values are achieved in 

phantoms and in vivo. 

Introduction: Spin-lock (SL) dispersion has recently been proposed as a new imaging biomarker for the detection of myocardial infarction1. SL dispersion is 

usually obtained by acquiring a range of T1⍴ maps at different amplitudes (frequencies). However, at 3T, specific absorption rate (SAR) limits the use of high-

frequency SL pulses, and long SL preparations suffer from strong off-resonance induced artifacts. Adiabatic T1⍴ may be used to avoid off-resonance effects, but its 

use in dispersion mapping is hampered as variable effective field strengths and sweep durations complicate the relation to a well-defined SL frequency. Relaxation 

Along a Fictitious Field (RAFF) is an alternative to SL pulses with lower SAR requirements2. RAFF operates in a sub-adiabatic regime with constant effective field 

strength and an identical, constant fictitious field strength leading to uniform sweeps. In previous studies, RAFF has been shown to preserve excellent sensitivity to 

acute myocardial infarction and chronic scar3, but its use for dispersion mapping remains unstudied. In this work, we sought to provide a method for the assessment 

of myocardial SL dispersion at 3T using RAFF in a single breath-hold (BH). The proposed technique is evaluated in phantom measurements and initial in vivo 

images of a healthy subject. 

Methods: In the proposed simultaneous TRAFF2 and T2 mapping sequence, 5 balanced SSFP images with different magnetization preparations were acquired during 

a single 16s BH (Fig. 1). A first image acquired with no preparation is followed by images prepared with 2 RAFF2 preparation blocks2 (TRAFF2
P with different 

duration) and 1 T2 preparation (T2
P) duration, each preceded by a 4s rest period. A saturation-prepared image was acquired in the subsequent heartbeat to capture 

the effect of imaging pulses on the magnetization curve. Simultaneous TRAFF2 and T2 maps were obtained using a 3-parameter fit: 

S(TRAFF
P ,T2

P,A,B)= {A∙e
-
TRAFF

P

TRAFF+B

A∙e
-
T2

P

T2+B

  

SL dispersion maps were calculated by the difference between T2 (zero-frequency SL) and TRAFF2 (approximation for SL relaxation) times normalized by the RAFF 

frequency as the assumed SL frequency. Phantom and in vivo measurements were performed on a 3T MRI scanner (Prisma, Siemens Healthineers, Erlangen, 

Germany) with a 28-channel receiver coil array. Phantom measurements were performed on the T1MES4 phantom to evaluate the accuracy and precision of the 

proposed sequence against regular TRAFF2 and T2 mapping. Simultaneous TRAFF2 and T2 maps were obtained using the proposed sequence with TRAFF2
P times of 12.9 

and 25.7 ms (RF pulse power of 625 Hz) and T2
P of 50 ms. To assess intra-scan reproducibility, 3 scan repetitions were performed in separate acquisitions in the 

phantom experiments and the coefficient of variation (CV) across all the measurements was computed. A reference TRAFF2 map was obtained using TRAFF2
P = 0, 

12.9, 25.7, and 38.6 ms and an image preceded by a saturation pulse. Reference T2 map was acquired with T2
P of 0, 50, 50, 50 ms, followed by an image preceded 

by a saturation pulse5. Correlation and Bland-Altman plots were obtained to compare the joint and the individual TRAFF2, T2, and SL dispersion values. In vivo 

TRAFF2 and T2 maps were obtained using the proposed sequence and individual reference methods for one healthy subject (male, 35y) in a BH of 16s for each 

sequence. All baseline in vivo images were registered using group-wise registration to minimize motion within and across the separate BH6 and SL dispersion was 

computed. Standard deviation (SD) maps in ms were obtained from the fit residuals to obtain a spatially resolved estimation of the precision of the proposed 

sequence7. The imaging parameters were kept constant for phantom and in vivo measurements: FOV: 320x255mm2; In-plane resol.: 1.7x1.7mm2; Slice thick.: 

8mm; GRAPPA factor/Ref. lines: 2/24; TE 1.6ms; Readout type: bSSFP. 

Results: TRAFF2 and T2 values obtained with the proposed simultaneous sequence exhibited excellent correlation (R2 = 1.00) with the reference TRAFF2 and T2 for the 

phantom vials (Fig. 2). Dispersion maps yield good sensitivity to changes in the vials of the T1MES phantom. In addition, excellent reproducibility (CV < 10% for 

the majority of the vials) was observed in the phantom measurements (Fig. 3). In vivo TRAFF2  and T2 maps with the proposed sequence were obtained with high 

visual map quality, and no B1
+ or B0 related artifacts were visible (Fig. 4-5). The average (± std) myocardial TRAFF2 and T2 obtained with the proposed sequence 

(68.0 ± 10.7 and 44.0 ± 4.0 ms, respectively) were comparable to the reference methods (62.7 ± 11.7 and 41.2 ± 2.4 ms, respectively). The myocardial SL 

dispersion map resulted in an excellent depiction of the myocardium with a small increase in variability when compared to the SL dispersion obtained with the 

single-parameter reference maps (0.4 ± 0.2 and 0.3 ± 0.2 x 10-4 s2, respectively). 

Discussion: In this work, we propose a method for approximate SL dispersion mapping in the heart by measuring TRAFF2 and T2 in a single 16s BH at 3T. 

Homogeneous TRAFF2, T2, and SL dispersion maps of high visual quality were obtained for phantom and in-vivo. By combining multiple contrasts with RAFF2-, T2- 

and saturation-prepared images with a three-parameter fit, the consistency of the relaxation time measurements and the resilience of changes in scan parameters and 

other confounders is increased5. RAFF may be more reflective of a single SL frequency component as compared to adiabatic T1⍴, while still enabling the use of 

high field strengths. T1⍴ relaxation depends on the orientation of the magnetization and the effective field, as well as the effective field strength. T1⍴ relaxation is 

non-constant throughout adiabatic T1⍴ preparation pulses. In RAFF preparations, the effective field strength, as well as the fictitious field components, giving rise 

to the sweep, are kept constant and identical throughout the preparation. RAFF does not suffer from the same susceptibilities as off-resonance and the high SAR 

burden as continuous wave SL. Thus, the proposed simultaneous TRAFF2 and T2 mapping sequence is an excellent candidate for the clinical application of SL 

dispersion rate due to the lower requirements in SAR while still providing exchange rate information. 

Conclusion: Our results show a promising potential for myocardial spin-lock dispersion in a single BH using TRAFF2 mapping with clinically tolerable SAR and 

without the use of contrast agents. The proposed sequence obtains simultaneous TRAFF2 and T2 maps and yields high visual image quality, homogeneous signal, no 

B1
+ or B0 artifacts, and excellent reproducibility. Clinical sensitivity to pathological remodeling, such as for the non-contrast assessment of scar, will be the subject 

of future studies. 

References: [1] Han, Y., Liimatainen, T., Gorman, R.C. et al. (2014), Assessing Myocardial Disease Using T1ρ MRI. Curr Cardiovasc Imaging Rep 7, 9248. [2] 

Liimatainen, T., Sorce, D.J., O'Connell, R. et al. (2010), MRI contrast from relaxation along a fictitious field (RAFF). Magn. Reson. Med., 64: 983-994. [3] Yla-

Herttuala, E., Laidinen, S., Laakso, H. et al. (2018), Quantification of myocardial infarct area based on TRAFFn relaxation time maps - comparison with 

cardiovascular magnetic resonance late gadolinium enhancement, T1ρ and T2 in vivo. J Cardiovasc Magn Reson 20, 34. [4] Captur, G., Gatehouse, P., Keenan, 

K.E. et al. (2016) A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance—the T1 Mapping and ECV Standardization in 

cardiovascular magnetic resonance (T1MES) program. J Cardiovasc Magn Reson 18, 58. [5] Akcakaya, M., Basha, T.A., Weingartner, S., et al. (2015) Improved 

quantitative myocardial T2 mapping: impact of the fitting model. Magn Reson Med 2015;74:93–105. [6] Tao, Q., van der Tol, P., Berendsen, F.F. et al. (2018), 

Robust motion correction for myocardial T1 and extracellular volume mapping by principle component analysis-based groupwise image registration. J. Magn. 

Reson. Imaging, 47: 1397-1405. [7] Kellman, P., Arai, A.E., Xue, H. (2013) T1 and extracellular volume mapping in the heart: estimation of error maps and the 

influence of noise on precision. J Cardiovasc Magn Reson. 15:56. 
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Fig. 1. A) Pulse sequence diagram for the proposed simultaneous myocardial TRAFF2 and T2 

mapping sequence. B) The difference between the TRAFF2 (max frequency) and T2 (0 frequency) 

map divided by the RAFF2 pulse amplitude results in an approximation for a spin-lock (SL) 

dispersion map. 

 

Fig. 2. A) T2, TRAFF2, and spin-lock (SL) dispersion maps for the T1MES phantom using the 
proposed simultaneous sequence (top row) and the single-parameter reference maps (bottom 

row). B) Correlation and Bland-Altman plots for each parameter, showing an excellent 

correlation between the relaxation properties in phantom, in the expected in vivo range. 

 

Fig 3. Coefficient of variation (CV) across 3 measurements using the proposed simultaneous 

TRAFF2 and T2 mapping sequence. All vials show a CV lower than 10% demonstrating excellent 

reproducibility of the proposed sequence. 

 

Fig. 4. A) Baseline images for the proposed simultaneous TRAFF2 and T2 mapping sequence with 

the corresponding preparation times. B) In vivo myocardial TRAFF2, T2, and spin-lock (SL) 

dispersion maps were obtained with the proposed sequence and with the single-parameter 
sequences (Reference). Following image registration, the dispersion map is obtained by 

subtracting T2 from TRAFF2 and dividing by the RAFF2 pulse power. All maps present high visual 

image quality, homogeneous myocardial signal and no B1
+ or B0 artifacts are visible. 

 

Fig. 5. Standard deviation (SD) maps obtained from the fit residuals show a spatially resolved 

estimation of the precision of each measured parameter. 

 

P-036 
 

Abstract Category Acquisition – Body/Cardiac 

 

  



 

  

 

R. Merton1, E.M. Schrauben1
, G.J. Strijkers2, A.J.Nederveen1, P. van Ooij1,3 

1Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands; 2Biomedical Engineering and Physics,  Amsterdam University Medical Centers, 

Amsterdam, the Netherlands.3Radiology, University Medical Center Utrecht, Utrecht, the Netherlands. 

 

 

 

Synopsis: Capturing 3D aortic motion over the heart cycle may give insight into a new biomarker for aortic disease and potentially improve the measurement of aortic hemodynamic 

parameters. An isotropic, free-breathing, respiratory-corrected 3D CINE balanced steady-state free precession imaging technique of the thoracic aorta was developed to investigate 

scan-rescan reproducibility of aortic diameter and displacement measures in nine healthy volunteers. Scan-rescan diameter was highly reproducible (CV<10% , ICC=0.85-0.86 and 

Pearson’s ρ=0.87) while displacement was more variable (CV=34-42%, ICC=0.34-0.50, ρ=0.59-0.72). These results are encouraging for future studies investigating aortic motion in 

health and aortopathy. 

Introduction: The motion of the aorta over the cardiac cycle has not often been considered as a biomarker for aortic disease. However, it is possible that aortapathy is exacerbated by 

increased aortic resistance to heart motion (expressed as decreased aortic displacement over the cardiac cycle), for example in Marfan disease. Therefore, it is of interest to investigate 

whether the motion of the aorta over the cardiac cycle can be reliably quantified. 

CINE balanced steady-state free precession (bSSFP) provides excellent blood-tissue contrast to study motion of the heart and aorta, but is clinically acquired in multiple breath-holds 

and thick slices, hindering accurate quantification of 3D diameter and motion. Therefore, the aim of this study was to create an isotropic, free-breathing, respiratory-corrected 3D CINE 

bSSFP imaging technique of the thoracic aorta, and to investigate aortic scan-rescan reproducibility of diameter and displacement measurements. 

Methods: Nine healthy control subjects (7 women, age 28 ± 3 years) were enrolled and underwent two MRI examinations separated by a break of 2-5 minutes that included repositioning 

and replanning. All 3D CINE bSSFP exams were performed during free breathing with PROspective Undersampling in multiple Dimensions1 (PROUD CINE) with an undersampling 

factor of R = 10 in a sagittal oblique orientation. MRI acquisitions used retrospective electrocardiogram (ECG) gating on an Ingenia 3T MRI scanner (Philips Healthcare, Best, 

Netherlands) using a 16-channel torso and 8 channel posterior coil. Pulse sequence parameters for the PROUD CINE scan were: field of view = 256 × 256 × 88 mm3; 

acquired/reconstructed spatial resolution = 1.6 × 1.6 × 1.6 mm3; temporal resolution ~67 msec (15 timeframes); TR/TR=3.4/1.7 msec; FA=30°; free-running acquisition time ~3 min:48 

s. 

For respiratory correction of PROUD CINE, the k0,0 readout in the foot-head direction (sampled at ~3.9 Hz) was used to extract the respiratory self-gating signal2. K-space data were 

then re-sorted into a 5D dataset with 15 cardiac frames and 4 respiratory frames. Subsequently, a compressed sensing3,4 reconstruction of the data was applied using a sparsifying total 

variation operator along the cardiac and respiratory dimensions with regularization parameters λC=λR=0.1 and number of iterations set to 205. To correct for respiratory motion, non-

rigid registration6 of cardiac-averaged reconstructions to the end-expiration phase was performed. Each respiratory phase of the 5D set was then transformed to end-respiration using 

the displacement fields retrieved with the registration and the average over the respiratory dimension was used for further analysis. In post-processing, inspection was used to determine 

the last cardiac phase showing contraction and this phase was selected for the 3D end-systolic images. The diastolic images were systematically selected 5 cardiac phases later and both 

were manually segmented using Mimics v24 (Materialise, Leuven, Belgium). 

The segmentations were transformed into surface objects in Matlab and diameter was calculated per surface vertex as the length of the vector along the normal of the surface to the 

opposing side7. Aortic displacement was calculated following non-rigid registration of the systolic segmentation surface to the diastolic segmentation surface using an iterative closest 

point (ICP) method8. The distance between the registered and source surface vertices represents displacement, where source coordinate values were subtracted from registered coordinate 

values. 

Diameter and displacement results are given as mean ± standard deviations. To quantify scan-rescan reproducibility of these metrics, the rescan data was rigidly registered and 

interpolated9 to the scan data using FLIRT (FMRIB’s Linear Image Registration Tool10), after which voxel-by-voxel Bland-Altman (mean difference, limits of agreements (LoA) and 

coefficient of variation (CV)) and orthogonal regression (slope, intercept, Pearson’s ρ and intra-class correlation coefficient (ICC)) analysis were calculated per subject and subsequently 

averaged over the subjects. A sub-analysis for the ascending aorta was performed. 

Results: Figure 1 shows the data acquisition and reconstruction pipeline and an example of healthy aortic motion. In Figure 2 segmentation contours are provided for systolic and 

diastolic scan and rescan aortic slices.  Figure 3 displays the displacement calculation method and an example of an aortic 3D diameter and displacement map.  Figure 4 shows an 

example of scan-rescan systolic and diastolic diameter and displacement maps as well as Bland-Altman and orthogonal regression plots. Table 1 provides the results of the voxel-by-

voxel Bland-Altman and orthogonal regression analysis over all subjects.  

For all diameter and displacement measurements, the absolute mean differences were smaller than 0.5 mm with LoA=2.5-3.5 mm. The reproducibility for diameter measurements was 

good (CV<10% , ICC=0.85 and ρ=0.87) while the reproducibility for voxel-by-voxel displacement was poor (CV=42%, ICC=0.34, ρ=0.59). Displacement reproducibility was higher 

for the ascending aorta (CV=34%, ICC=0.50, ρ=0.72). 

Discussion: Three-dimensional aortic diameter maps showed good reproducibility. For displacement, the result of ICP registration might be sensitive to small differences in 

segmentation, especially on a voxel-by-voxel basis. Comparison of initial segmentation differences with corresponding displacement map differences supports this suggestion, which 

was also reflected in the better agreement for the ascending aorta. Automatic machine learning segmentation may mitigate this problem after more data is acquired11. 

Conclusion: Systolic and diastolic segmentations of the aorta from high isotropic spatial resolution free-breathing, respiratory-corrected 3D CINE PROUD scans showed good 

reproducibility for diameter, while the moderate reproducibility of displacement metrics needs further investigation. This technique may be useful for future studies investigating aortic 

motion in health and disease. 
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 Figure 1: Data acquisition and reconstruction pipeline 

1. A free-running prospectively undersampling bSSFP acquires data in ~4 minutes. 

2. From the k0,0 line, respiratory self-gating is performed and data are sorted into a 5D dataset with 15 cardiac and 4 

respiratory phases. CS reconstruction uses total variation over cardiac and respiratory dimensions. 

3. Images are averaged over the cardiac dimension, followed by 3D non-rigid registration to end-expiration (vector 

overlays). Respiratory displacements are then applied to the 5D images and data is respiratory-averaged. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Reconstruction of PROUD CINE with segmentation contour of diastolic (blue) and end-systolic phase (red)           of 

the scan and rescan in one volunteer in coronal, axial and sagittal view. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Post processing pipeline 

1.The systolic and diastolic aorta segmentations are transformed to a surface in 

Matlab. 2. For each surface vertex the diameter is calculated. For the final analysis a 

fixed extend of the surfaces are discarded to remove erroneous diameter calculations 
from face-end vertices. 3. The systolic surface is non-rigidly registered to the diastolic 

surface using iterative closest point method and diameter values interpolated8. 4. 

Displacement is calculated by subtracting the old systolic vertex coordinates from the 

new vertex coordinates. 

Figure 4: Scan-rescan diameter and displacement analysis in one volunteer of diastolic diameter (a) systolic diameter    

(b) and displacement (c). 1: The 3D diameter and displacement fields used for the voxel-by-voxel analysis. 2: voxel-

by-voxel analysis: Bland-Altman comparison, 3: orthogonal regression. 

 
Table 1: Scan and rescan mean, mean difference, limits of agreement, Coefficient of 

Variation, slope, intercept, Intraclass Correlation Coefficient and Pearson’s correlation 

coefficient ρ for systolic and diastolic diameter measurements and 3D displacement for 
total aorta and ascending aorta averaged over all subjects. For the ascending aorta a ROI 

from root to the location of the first branch in the aortic-arch was used to create a subset of 

displacement values. 
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Synopsis: Single breath-hold native MOLLI T1 mapping in 3 slices is possible using SENSE=4 & 6 and a 72 channel receive array. T1 values in 16 segments of the 

17-segment AHA model (excluding the apical segment) were similar compared to SENSE=2 using 3 breath-holds measured in 20 healthy subjects (10 female). 

Myocardial T2 GRaSE mapping with fewer breath-holds in 3 slices is possible, though at  the expense of decreased accuracy of the T2 values in specific segments. 
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INTRODUCTION: Quantitative Magnetic Resonance Imaging (qMRI) via T1 and T2 mapping is increasingly being used in cardiac imaging to guide clinical care [1]. Currently T1 maps are typically 

acquired using a Modified Look Locker sequence (MOLLI) [2]. T2 maps are commonly acquired using a Gradient-Spin-Echo (GraSE) sequence [3]. Both methods would benefit from scan acceleration to 
reduce the number of breath holds (BHs) required, as currently a single BH only permits acquisition of a single slice. T1 and T2 mapping methods can be accelerated using Sensitivity encoding (SENSE) 

which benefits from a high density receive array. Currently SENSE=2 is applied in our clinic in combination with the vendor-supplied 16-channel anterior receiver array. In recent years we have developed  

a 72 channel receive array which would allow for higher acceleration factors and thus potentially faster T1 and T2 mapping acquisition [4].  

The goal of this study was to accelerate native cardiac T1 and T2 mapping using a dedicated 72-channel receive array. SENSE factors up to 4 and 6 were explored to facilitate native T1 and T2 mapping of 

3 slices in 1 and 2 BHs, respectively.  

 

METHODS: 20 healthy subjects (10 female), aged 34 ± 7 years, body weight 76 ± 9 kg, heart rate 57 ± 10 beats/min (bpm) where included. MR examinations were performed with a 3T MR scanner (Ingenia, 

Philips Healthcare, Best, The Netherlands ). A novel 72-channel cardiac array coil was used which has 2 flexible arrays of 36 coils which were placed on top of the chest of the subject, as shown in Figure 1. 

For MOLLI, a shared inversion pulse interleaved approach was designed to acquire 3 slices after the same inversion (Figure 2). Thereby, only 1 BH was needed to acquire the 3 slices. We took into account 

that because all slices share the same inversion pulse, the inversion time for the 3 slices was slightly different. For T2 mapping we used a multi-shot GraSE acquisition. With higher acquisition factors less 
shots, and thus heartbeats, are needed to acquired one image. Therefore multiple slices can be acquired within one BH. For both T1 and T2 mapping acquisition we acquired 3 axial slices covering the basal, 

mid-ventricular and apical myocardium.  

Images with different inversion times (T1 mapping) and for different echo-times (T2 mapping) were aligned (Elastix) using a b-spline registration and pixel-wise fitted to provide T1 and T2 maps. Average 

T1 and T2 values were determined in 16 segments of the 17-segment AHA model (excluding the apical segment) and compared per slice and per segment between SENSE=2, 4, and 6 accelerated acquisitions. 
To quantify the differences, average T1 and T2 values were statistically compared on a slice and segment level. Normality of data was checked and a two-way factor ANOVA analysis was applied with 

acceleration factor and segments as factors. All statistical analyses were performed using R (v. 4.0.3) and Rstudio (2021.09.0.351). P-values of < 0.05 were considered significant.  

RESULTS: Figure 3a shows a representative example of native T1 maps acquired with SENSE=2 (3BHs x 11 sec at 60 bpm), 4 (1BH x 11 sec at 60 bpm) and 6 (1BH x 11 sec at 60 bpm). Similarly, Figure 

3b shows typical T2 maps acquired with SENSE=2 (3BHs x 13 sec at 60 bpm), 4 (3BHs x 9 sec at 60 bpm) and 6 (2BHs x 10 sec at 60 bpm). Figure 4c shows the descriptive statistics of the native T1 and 
T2 map acquisitions using SENSE=2, 4 and 6. Mean T1 and T2 values per segment are shown in figures 5a-b. The two-factor ANOVA revealed no difference in mean and segmental T1 values per slice: no 

significant differences were found in any of the 16 segments between SENSE=2 and 4 and SENSE=2 and 6 and no interaction was present (figure 5a).  

The two-factor ANOVA revealed statistical differences per slice in mean T2 values due to PI factor and segments, and an interaction effect was present between both conditions.  For T2 on segmental level, 

significant differences were seen between SENSE=2 and 4 in segments 1, 3 (p<0.05) and 2, 8 (p<0.01) . For SENSE=6 this was in segments 1, 2, 5 (p<0.001), 3, 6, 7, 8, 12 (p<0.01) and 13, 14 (p<0.05) 

(figure 5b).  

 

DISCUSSION: Generally, both T1 and T2 maps have a noisier appearance with increasing acceleration, particularly for the basal slices. However, 16-segmental multislice native myocardial T1 mapping 

acquired in a single BH using an accelerated acquisition with PI factors up to 6 were similar to reference values acquired in 3 BHs.  The accelerated cardiac T2 mapping values significantly deviated from 

reference values particularly for the basal slices which we believe could be due to motion sensitivity of the T2 mapping sequence. Currently a second 72 channel coil has been build doubling the total of 

receive elements to 144. 

 

CONCLUSION: Native myocardial T1 mapping quantification of 3 slices in just 1 BH is possible using a modified MOLLI sequence in combination with a new 72-channel receive array and SENSE=4 or 

6. The myocardial T2 mapping protocol can be accelerated to achieve fewer BHs. However, this goes at the expense of decreased accuracy of the T2 values in specific segments. 

 

SUMMARY OF MAIN FINDINGS: MOLLI native myocardial T1 mapping in 3 slices is possible in as few as 1 BH using SENSE=4 or 6 and a 72 channel receive array. 
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Figure 1: New 72 channel local array setup. (Left) The 2x36 channel arrays 

are visible attached to the interface box. (Right) Subject in the scanner with 

the 2 channel arrays positioned on the chest of the subject. 

Figure 2: Acquisition timing scheme of the interleaved MOLLI sequence with 

shared inversion pulses. Light blue = apical slice, light purple = mid-ventricular 

slice, deep purple = basal slice.  TI = time intervals 

Figure 3a: Example of T1 maps acquired with SENSE 2, 4 and 6 for an apical, 

mid-ventricular, and basal slice. 
Figure 3b: Example of T2 maps acquired with SENSE 2, 4 and 6 for an apical, 

mid-ventricular, and basal slice. 

Figure 4b: Time resolutions MOLLI sequence. PI = parallel imaging, ms = milliseconds 

Figure 4a: Acquisition parameters MOLLI and GRaSE sequence. mm = millimeter, ms = millisecond 

Figure 4c: Myocardial relaxation times T1, T2 in milliseconds for SENSE=2, SENSE=4 

and SENSE=6. PI = parallel imaging, CI = confidence interval, SD = standard deviation 

 

Figure 5a: Boxplots with mean native T1 (ms) values 
per segment for (green) SENSE 2, (purple) SENSE 4, 

and (red) SENSE 6, accelerated scans. 

 

Figure 5b: Boxplots illustrating mean T2 (ms) values 
per segment during each accelerated acquisition. Green 

is SENSE=2, purple is SENSE=4, red is SENSE=6 
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Synopsis: Time is of the utmost importance in diagnosis and treatment of acute ischemic stroke. Compressed-sensing (CS) inference times are currently limiting the 

clinical workflow. Deep learning reconstruction may allow for faster inference time than iterative CS. Here, we evaluated two variants of the recurrent inference 

machine (RIM) which were trained on a different dataset of T1-images for reconstructing highly-undersampled (12X) 3D FLAIRs of patients with acute neurological 

deficit and compared them to CS. Both RIM variants showed good reconstruction quality and faster inference times than CS, while diagnostic interpretability was 

preserved according to an expert neuroradiologist. 

Introduction: Time is of the utmost importance in diagnosis and treatment of acute ischemic stroke. In most countries, CT is used to perform stroke diagnosis instead 

of MRI. Our aim is to improve the acquisition and reconstruction times of MRI to be more competitive with CT while preserving MRI’s rich diagnostic information. 

Compressed-sensing (CS) iterative reconstruction allows for reconstructing highly accelerated data based on image sparsity and has become commonplace in the 

clinic.  Clinically desired zero-filling by a factor of two yields inference times that exceed measurement time, posing limitations in the clinical workflow. Here, we 

investigate potentially faster deep learning reconstruction for stroke by retrospectively reconstructing highly-undersampled (12X) 3D FLAIR imaging used in the 

setting of acute neurological deficit, and evaluate image quality and reconstruction times. 

Methods:  

Data acquisition 

Data were routinely acquired from patients with acute neurological deficits (N=6) who were admitted to the Fondation Rothschild Hospital in Paris, France. The 

hospital’s IRB approved this study. Informed consent was not required for this study with anonymized clinical data. 

The stroke examination consisted of multiple scans, of which the sagittally acquired 3D TSE FLAIR is analyzed here. All scans were acquired on a Philips Ingenia 

Elition 3T equipped with a 32-channel head coil. Scan parameters were as follows: 1.15mm³ isotropic resolution, TR=8000ms, TE=311ms, TI=2400ms, turbo 

factor=186, scan time=1m52s. The data were prospectively undersampled with a variable density mask with a radial shutter to a factor of approximately 12. 

Sensitivity-reference scan data were used for coil sensitivity estimation. 

Pre-processing 

All data were preprocessed in a custom pipeline in Matlab (version R2019b, Mathworks). The FLAIR k-space data were loaded and corrected with MRecon (version 

4.4.4, GyroTools), before removing oversampling in the read-out direction and clinically desired zero-filling by approximately a factor of two in all directions – 

leading to an eightfold increase in matrix size. The sensitivity-reference scan was upsampled and brought into alignment with the FLAIR scan. Sensitivity maps were 

calculated with caldir (range 50) implemented in the BART toolbox1. 

Deep learning reconstruction models 

The basis of our deep-learning reconstruction methods is the Recurrent Inference Machine (RIM)2. The RIM is a physics-based model, where the prior information 

is explicitly formulated through the forward model for solving the inverse problem of accelerated-MRI reconstruction. Its recurrent nature allows it to have a notion 

of memory and share parameters over time-steps for unrolled optimization by gradient descent. 

We chose the Independently Recurrent Neural Network (IndRNN) layer3 and call this model IRIM. Furthermore, we implemented cascades and built RIM blocks 

connected sequentially to create the Cascades of Independently Recurrent Variational Inference Machine (CIRVIM), see Figure 1. We used the l1-norm to calculate 

our loss on normalized magnitude images. 

Pretraining and parameters 

Models were pretrained on a T1-weighted brains dataset2 with 64 input channels, 8 time-steps, and for the CIRVIM 8 cascades. We compared the performance of 

these models to Parallel-Imaging Compressed Sensing (PICS) reconstructions done with BART. We used an l1- wavelet sparsity transform, setting the regularization 

parameter to 0.05 and the maximum number of iterations to 60. For a fair comparison, PICS reconstructions were conducted on GPU rather than CPU. All experiments 

were performed on an Nvidia Tesla V100 GPU-card with 32GB of memory. 

Results: We were able to reconstruct all subjects’ data with all models (see Figure 2 for three examples with visible lesions).  

All reconstructions were blindly rated by an expert neuroradiologist (JS) and deemed suitable for clinical reading with good diagnostic confidence (Interpretability, 

Table 1). Image quality was similar across models, with our models scoring higher on subjective SNR at the cost of sharpness compared to CS.  

Moreover, both deep learning models had a shorter inference time than the CS iterative reconstruction, as can be seen in Table 2. Of note is the reconstruction time 

of the IRIM (32.1 sec), which was twenty-seven times shorter than PICS (872.3 sec) and five times shorter than the CIRVIM (143.3 sec).  

Discussion: Our results show the feasibility of reconstructing raw MRI data with deep learning models that are able to speed up reconstruction while preserving 

diagnostic interpretability, despite training on a completely different sample. The state-of-the-art in image reconstruction is moving towards models with an 

increasingly large number of parameters. Our results show a potential benefit in using smaller models for time-critical applications such as stroke. We suspect this 

speed difference is most noticeable for large (zero-filled) matrices. 

Possibly, the decision on which reconstruction method eventually to use on-scanner will be made in the future by weighing the trade-off between visual fidelity and 

reconstruction times. This would be similar to weighing the trade-off between scan quality and acquisition time during acquisition.  

Our study was limited by the lack of a fully-sampled ground truth. However, it would be unethical to acquire data without acceleration in the time-critical context of 

acute neurological deficit. In future work, we aim to extend our results to other sequences used in acute neurological deficit MRI. 

Conclusion: Our models are able to reconstruct raw acute ischemic stroke FLAIRs out-of-sample, at a benefit in reconstruction time compared to CS reconstruction 

whilst preserving diagnostic interpretability. 
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Table 1. Mean (standard deviation) image quality rating by an expert neuroradiologist for all six patients. The neuroradiologist was blinded to the reconstruction 

models used. Scales range between 0 (poorest) and 5 (best). Images were rated on clinical interpretability with good diagnostic confidence, subjective signal-to-

noise ratio (SNR), subjective image homogeneity (bias), and subjective sharpness. Image quality was defined as the average of the other scores.  

 Interpretability Subjective SNR Homogeneity Sharpness Image quality 

IRIM 5.0 (±0.0) 4.3 (±1.2) 2.3 (±1.2) 3.5 (±1.2) 3.8 (±0.5) 

CIRVIM 5.0 (±0.0) 4.0 (±0.9) 2.5 (±1.0) 3.8 (±1.0) 3.8 (±0.3) 

PICS 5.0 (±0.0) 1.8 (±0.8) 4.0 (±0.6) 5.0 (±0.0) 4.0 (±0.2) 

 

Table 2. Comparison of reconstruction times and number of parameters for all modalities used. The reconstruction times were determined for clinically desired 

zero-filled volumes at 0.58 mm3 resolution. Note that these reconstruction times do not include data loading and pre-processing. 

 IRIM CIRVIM PICS 

No. of Parameters 56k 420k - 

Mean reconstruction time 

(seconds) 

32.1 143.3 872.3 

 

Figure 1: Cascades of Independently Recurrent Variational Inference 

Machine (CIRVIM). The inputs to the model are the subsampled 

kspace measurements (top-right) and the computed log-likelihood 

gradient (llg, top-left). The llg is calculated with respect to the initial 

estimation xc. Through a sequence of alternating convolutional and 

recurrent layers (IndRNN) the model targets optimization through 

time-steps, and for a total number of Cascades. 

 

Figure 2: Comparison of FLAIR reconstructions using three models (IRIM, CIRVIM, 

PICS) from three subjects having an acute neurological deficit and a visible lesion.  
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Synopsis: We present a retrospective rigid motion correction and reconstruction scheme for brain MRI with the aid of structural priors. The proposed framework is 

designed to be applied to a clinical protocol including multiple scans for multiple contrasts, of which some scans are corrupted due to motion during the 

acquisitions, but at least one is uncorrupted and exploited as an additional prior. We envision a practical workflow that can easily fit into the existing clinical 

practice without the need for changing the MRI acquisition protocols. 

Introduction: We propose a retrospective technique for the removal of rigid motion artifacts from brain MR reconstructions1,2. The main goal is to provide a post-

processing method that can be readily deployed in practical clinical settings (which are mostly based on conventional Cartesian acquisition schemes), with no 

alterations to the current clinical workflow. We picture the following scenario: in multi-contrast imaging, a trained technician can indicate that some contrasts are 

severely affected by motion, while other contrasts are deemed acceptable. Instead of repeating the corrupted scan, we propose a technique for a technique that aims 

at improving the contrast most severely affected by motion by leveraging the prior anatomical information provided by the well-resolved contrasts (since they share 

the same anatomy). Extensive synthetic datasets and a preliminary in-vivo study indicate that the method is potentially mature for multi-slice 2D protocols, and 

promising for more general 3D acquisition. 

Theory: We frame our work in the context of retrospective joint motion correction and reconstruction methods1,2, which can be casted as a constrained bi-level 

optimization problem. Here, the unknowns of interest are the reconstructed image and the rigid motion parameters associated with each readout line (no intra-

readout motion is considered).  Despite considering nominal Cartesian sampling, spatial rotations result in effective irregular sampling in the k-space. The 

optimization problem is tackled via inexact variable projection schemes3. We employ conventional regularization methods for the motion parameters (although one 

should consider phase-wrapping issues), and structure-guided TV regularization for image reconstruction4. This term enforces the spatial gradient field of the target 

reconstruction to align with the normalized spatial gradient field of known prior contrast devoid of motion artifacts. We note that the prior and the target contrasts 

do not need to be co-registered. 

Experiment description: We consider the following synthetic examples: 

• numerical BrainWeb5 T1w and T2w phantoms (256x256 images, 1mm in-plane); 

• in-vivo reconstructions with the following specifications: 

- FOV = 224x224x133.5 mm , resolution = 1x1x3 mm , gap = 1.5mm, slices = 30; 

- T1w: multi-slice Spin Echo, TR/TE = 451/14 ms, flip angle = 70; 

- T2w: multi-slice Turbo Spin Echo, TR/TE = 3400/80 ms, flip angle =90, TSE factor = 15. 

In both these cases, we retrospectively simulate artificial rigid motion artifacts for the T2w contrast and use the T1w contrast as the (uncorrupted) structural prior. 

The k -space data is acquired according to nominal Cartesian sampling. The motion type considered here is 2D in-plane "sudden" motion, which consists of two 

discrete positions where the change of position happens roughly halfway through the scan. Furthermore, we consider an 

• in-vivo experiment with the following specifications: 

- T1w: Fast Field Echo, FOV = 260x260x260 mm , resolution = 0.77x0.77x1 mm , gap = 1 mm, slices = 520, TR/TE = 25/2 ms, flip angle = 30; 

- T2w: multi-slice Fast Field Echo, FOV = 260x260x260 mm , resolution = 0.81x0.81x3 mm , gap = 3 mm, slices = 174, TR/TE = 2804/23 ms, flip angle 

= 18. 

Motion-corruption was induced on the T2w image by instructing the volunteer to replicate 2D in-plane sudden motion, as described previously. 

Again, the T1w image is used as prior, and nominal Cartesian sampling is considered. In Figures 1,2,3 we compare different reconstruction methods: 

• conventional: inverse Fourier transform of corrupted data; 

• joint: joint motion estimation and reconstruction with plain TV regularization; 

• proposed: joint motion estimation and reconstruction with structure-guided TV regularization. 

Discussion of the results: The results of the experiments described in the previous section aim at demonstrating the added value of structural priors compared to 

standard joint motion estimation and reconstruction schemes. These findings are consistent over a wide range of motion types. In particular, we compared a 

traditional joint estimation method and the proposed technique (the main difference being the use of structure-guided regularization) for sudden motion. We were 

able to consistently improve on the plain joint reconstruction results by several dB's in PSNR, and several points in SSIM, with higher resolution and fewer motion 

defects. The gain in resolution can be qualitatively assessed in all the "detail" comparisons in Figures 1,2,3. Some ghosting effects are more effectively removed by 

structure-guided regularization, as can be seen particularly in Figure 2. 

Conclusions: Including structural prior information gleaned from well-resolved contrasts allows a more effective resolution of motion artifacts, which we 

demonstrated with synthetic and in-vivo studies. In the future, we aim at further assessments of the capabilities of the proposed method with more extensive clinical 

studies. For a more flexible tool, we also aim at including out-of-plane motion. 

Acknowledgements: This publication is part of the project "Reducing re-scans in clinical MRI exams'' (with project number 104022007 of the research program 

"IMDI, Technologie voor bemensbare zorg: Doorbraakprojecten'') which is financed by The Netherlands Organization for Health Research and Development 

(ZonMW). The project is also supported by Philips Medical Systems Netherlands BV. 
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Figure 1: BrainWeb phantom: reconstruction results for different 

techniques. PSNR and SSIM metrics are computed after a preliminary rigid registration with the ground truth. 

Figure 2: In-vivo data with retrospectively simulated motion artifacts: 

reconstruction results for different techniques. PSNR and SSIM metrics are computed after a preliminary rigid registration with the 

ground truth. 

Figure 3: In-vivo data with motion perturbation induced by deliberate 

voluntary movement: reconstruction results with different techniques. PSNR and SSIM metrics are computed after a preliminary rigid 

registration with the reference image (obtained without voluntary motion). 
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Synopsis: In this study, we aimed to improve the 7T FLAIR image quality, especially within the temporal lobe regions which are often attenuated due to field 

inhomogeneities. A neural network using MP2RAGE and T2-weighted images as inputs was set up to generate a new FLAIR-like image. The training was performed 

on the extratemporal-lobe voxels of the acquired 7T FLAIR image. The deepFLAIR showed a significant improvement in the signal-to-noise ratio and contrast-to-

noise ratio in the temporal lobe regions in a number of cases. This study showed the potential to generate FLAIR-like images with reduced inhomogeneity artifacts 

and improved image quality. 

 

Purpose: Epilepsy affects approximately 1% of the world-wide population, with temporal lobe epilepsy (TLE) being the most common focal epilepsy type1. In recent 

years, Ultra High Field Magnetic Resonance Imaging (UHF MRI) has been shown to improve the detection of subtle potential epileptogenic lesions in patients with 

focal epilepsy2,3. Unfortunately, the higher magnetic field strength in UHF imaging introduces increased inhomogeneities in B0 and B1 fields leading to image artifacts 

and signal attenuations3,4. The T2-weighted FLAIR sequence is of particular interest to clinicians involved in the presurgical workup for epilepsy surgery due to its 

strong contrast and suppressing the cerebral spinal fluid, however it uses an inversion pulse and refocusing pulses which suffer from these inhomogeneities4,5. For the 

FLAIR sequence, the (inferior) temporal lobe area is often affected by signal attenuation (see Figures 1C-E, 3A). In this study, we attempt to improve the signal loss 

due to UHF inhomogeneities in temporal regions by creating a neural-network-generated FLAIR image (“deepFLAIR”) which could potentially reveal subtle temporal 

neocortical lesions.  

Methods: Eight patients (mean age 31y; range 21-46y; 5 females) with chronic, drug-resistant epilepsy with a suspected epileptogenic zone (2 patients with 3T-

positive lesions) were selected for this study. All patients were scanned on a 7T MRI (Siemens Healthcare, Erlangen, Germany) with a 32-element channel phased-

array head coil and bilaterally positioned dielectric pads. The following structural brain scans were acquired: MP2RAGE (0.7x0.7x0.7mm; TE=2.47ms; TR=5030ms; 

TI1=900ms; TI2=2750ms), T2-weighted (transverse slices, 0.6x0.6x2.0mm; TE=283ms; TR=4000ms), SPACEFLAIR (0.8x0.8x0.8mm; TE=303ms; TR=8000ms; 

TI=2330ms). All scans were coregistered to the quantitative T1 map and the T1 map was segmented into grey matter (GM) and white matter (WM).  

A non-linear regression multilayer perceptron (MLP) has been set up to reconstruct the 7T FLAIR images and boost the signal in the temporal lobe areas which are 

being affected by the signal attenuations due to the field inhomogeneities. The MLP was trained on 4 input images (see Figure 1A-D) and consisted of 4 hidden layers 

(16; 64; 32; 8 neurons). The output layer consisted of a single neuron. The MLP works on a voxel-wise basis, meaning that each voxel in the generated FLAIR-like 

image is determined by the corresponding voxels from the input images. The training was done on slices outside the temporal lobe region. The training lasted for 10 

epochs with batch size=100. After the training, the entire scanned area was reconstructed using the trained model to form the deepFLAIR image.  

Right and left temporal lobe regions-of-interest (ROIs) sized 28x28x28mm were manually delineated to facilitate the evaluation (see Figure 2B). The quality of the 

output image was evaluated by calculating the signal-to-noise ratio (SNR) of the WM and contrast-to-noise ratio (CNR) between the GM and WM in the temporal 

lobe ROIs using the following equations: 

1) 𝑆𝑁𝑅 =
µ

𝜎
                      2) 𝐶𝑁𝑅 =

|µ𝐺𝑀 − µ𝑊𝑀|

√𝜎𝐺𝑀
2 + 𝜎𝑊𝑀

2

2

 

where µ and σ are the mean voxel intensity and the standard deviation from the selected tissue (GM or WM) within the ROI, respectively. The SNR and CNR from 

right and left ROIs were statistically compared via a Wilcoxon signed-rank test between the originally acquired 7T FLAIR and the deepFLAIR images. 

Results: Figure 3 shows the generated deepFLAIR image compared with the acquired 7T FLAIR images for a representative subject. When visually assessing the 

acquired images, the right temporal lobes seemed to be more affected by the magnetic inhomogeneities than their left counterparts. The statistical test revealed a 

significant improvement in the deepFLAIR image in SNRWM (p=0.016) and CNR (p=0.023) in the right temporal lobe area. The deepFLAIR approach showed an 

increase in both SNRWM and CNR for 10 out of 16 temporal lobes. The SNRWM and CNR results were visualized in a paired line plot in Figure 4. 

Discussion: This study demonstrated a concept of neural-network-informed improvement of the 7T FLAIR image contrast. A statistically significant improvement 

was found for both SNRWM and CNR in the right temporal lobes. This suggests that the deepFLAIR approach could have a significant impact in the more severely 

attenuated temporal lobe regions and therefore facilitate a more confident diagnosis. The per-subject nature of the deepFLAIR provides independence from an 

extensive subject database but also limits the training data to merely a single brain. The concept seems promising and utilizing more sophisticated network 

architectures, alterations of the training data or extension across multiple subjects could result in further improvements. This work also needs to be expanded with 

more varied cases including specific types of epileptogenic lesions and careful prior evaluation by an independent neuroradiologist. The deepFLAIR, despite its 

qualities, should still be interpreted with care. The main limitation is the lack of a golden standard in the temporal lobe regions, which could be potentially provided 

with the use of Universal Pulses4. 

Conclusion: This conceptual study presented a possibility to generate FLAIR-like images with reduced inhomogeneity artifacts in the inferior anterior/lateral temporal 

lobe and overall improved tissue contrast. Further optimizations of the network and the training dataset might provide a significant boost in the image quality and its 

ability to fully reconstruct the attenuated temporal lobe areas. 
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Figure 1: Neural network training input brain scans. A: MP2RAGE derived quantitative T1 map; B: MP2RAGE derived unified image; C: MP2RAGE second inversion image; D: T2-weighted image;  

E: acquired 7T FLAIR image. Note the signal loss in the temporal lobe on images C,D and E. The network learns to predict the voxel intensities in E from the voxel intensities in A,B,C and D. 

Figure 2: Visualization of the T1 map 

segmentation and the selected ROIs for 

evaluation. A: MP2RAGE derived 

quantitative T1 map with a color bar in 
milliseconds; B: Grey matter and white 

matter segmentation output with the 

selected ROIs (orange rectangles) 
overlayed. ROIs were sized 28x28x28mm 

to encapsulate majority of the inferior 

temporal lobe. The segmentation was 
done using SPM12, a free toolbox for 
Matlab (Mathworks Inc., 2020) 

Figure 4: Paired line chart representing 

the improvement in temporal lobes in 
terms of signal-to-noise and contrast-to-

noise ratios by utilizing the deepFLAIR 

approach. Each purple line represents a 
single subject and the change in 

SNR/CNR between the acquired 7T 

FLAIR and the generated deepFLAIR. 

Asterisk * indicates a significant 

difference by Wilcoxon signed-rank test 

(p<0.05). SNR – signal-to-noise ratio; 
CNR – contrast-to-noise ratio 

Figure 3: Representative example 

of the deepFLAIR results.  

A: acquired 7T FLAIR images;  

B: generated deepFLAIR images; 

C: detail of the temporal lobe area 

with strong signal loss in the 7T 

FLAIR image;  

Detail of the temporal lobe area in 

the generated deepFLAIR image. 

R-right; L-left. 
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Synopsis: Automated segmentation of brain MR images has paved the way for large cohort atrophy studies in multiple sclerosis (MS). A variety of automated software packages is available. Here we aimed 

to quantify brain volume differences measured by six freely available software packages on data from 21 MS patients all scanned thrice on three different MR scanners. While intra-class correlation coefficients 

were high, systematic differences between scanners were found for every software. This suggests that direct comparison of volumes acquired with different scanners is not possible and standardization is 

needed. 

 

Summary of Main Findings: ICCs for volume measurements in MS were high; however, systematic differences between scanners were found for every software. This suggests that direct comparison of 

volumes acquired with different scanners is not possible and standardization is needed. 

 

Introduction: Brain atrophy measurement using magnetic resonance imaging (MRI) is an important way to assess disease progression in multiple sclerosis (MS)1, 2.  Automated brain segmentation techniques 

enable effective processing of images instead of the time-consuming manual segmentation. However, brain volumetry in MS is still challenging, e.g. due to differences in acquisition protocols, analysis 
software and disease-related factors such as lesions3. Furthermore, segmentation is also affected by technological differences between scanner vendors, models or field strength4. These effects are more 

pronounced in multi-center trials and especially in the clinical setting, where MR scanners and acquisition protocols can vary frequently. Quantifying differences will provide an improved understanding of 

the resulting variability in atrophy measures, as well as mitigation of that variability. For the segmentation, several automated methods have been proposed, applying different approaches. Here we perform 
a comparison of reliability and repeatability between three different MR-scanners applying six freely available brain volume segmentation techniques. Additionally, we analyze the effect of lesion-filling on 

robustness in MS-brain volumetry.  

 

Methods: 21 subjects with MS (relapsing remitting MS n=16; secondary progressive MS n=1; and primary progressive MS n=4), underwent a scan and rescan on three 3T MRI scanners (GE MR750, Philips 

Ingenuity, Toshiba Vantage Titan). The acquired images were 3D T1-weighted and on the GE an additional 3D FLAIR was scanned, using locally optimized acquisition protocols. Details of the acquisition 
have been described elsewhere5. Lesion segmentation on the FLAIR images was performed with nicMS lesions using an optimal threshold of 0.56, 7. The lesion probability maps were registered to the vendor-

specific T1 space with FLIRT8. Thereafter, lesion filling was performed using LEAP3. Both filled and un-preprocessed 3D T1 images were segmented with FreeSurfer (v7.1), FSL (SIENAX & FIRST), 

Sequence Adaptive Multimodal SEGmentation (SAMSEG), FastSurfer (a deep learning approach based on FreeSurfer), CAT-12 and SynthSeg (a deep learning approach trained on synthetic data)(Figure 1) 
9-16. For all software packages the latest version and the recommended options were used (e.g. in FreeSurfer -3T –all). Both repeatability and reproducibility were assessed cross-sectionally using the intra-

class correlation coefficient (ICC) based on the 95% confidence interval for absolute agreement and for consistency, respectively. The ICC-values were classified according to the standards of Koo and Li 

(2016)17. Reproducibility was additionally assessed with repeated measures ANOVA or Friedmann test for non-parametric data. If appropriate, post-hoc testing was performed using pairwise t-tests or 

Wilcoxon signed rank tests. Reported p-values are Bonferroni corrected.  

 

Results: The overall between-scanner ICC for consistency was good to excellent (>0.7) for all the software, except for some small structures such as the accumbens. Figure 2 shows that SAMSEG seems to 

have the highest ICC for between scanner agreement, followed by FastSurfer and SynthSeg. The within-scanner agreement is on average higher than the between-scanner agreement. However, systematic 

differences in volume measurements between-scanners are found in all the software in both gray and white matter (Figure 3 and Figure 4). For every software package the white matter for GE has a lower 
volume compared to Toshiba and Philips (p<0.001, except for SynthSeg). Conversely, the volume of gray matter segmented from GE scans was significantly higher compared to both Toshiba and Philips 

scanners (p<0.001 and for SynthSeg p<0.05). Lesion filling did not significantly improve the ICC score, but we did see an increase in WM volumes, as expected.  

 

Discussion: In this study we compared the repeatability and reliability of 6 freely available software packages on three different 3T MR-scanners. The within-scanner agreement was higher than the between-

scanner agreement. Furthermore, systematic differences exist between scanners for each software. This implies that in a clinical setting or a cross-sectional multi-center/multi-scanner trial the patients have 
to be scanned on the same scanner to detect relatively small yearly atrophy rate in MS18. Our results concerning between-scanner differences are consistent with previous similar studies in MS19, 20. On average 

the between-scanner ICC scores are higher in SAMSEG suggesting that sequence adaptive software has a better reproducibility for multi-scanner studies. The FSL and FreeSurfer ICC scores were lower 

compared to other software. Noticeably, FastSurfer ICCs were higher than FreeSurfer, even though FastSurfer has been trained on FreeSurfer segmentation output instead of manual segmentations. A 

disadvantage of CAT-12 is that it does not explicitly segment the deep gray matter structures, but uses an atlas to get white matter and gray matter volumes. We unfortunately did not have manually outlined 

segmentations to check the quality of the segmentation of the images. In addition, not every segmentation was visually inspected for correctness, but abnormal volumes were excluded from the analyses.  

 

Conclusions: Although both between- and within ICCs are high, systematic differences between scanners are present suggesting the need for standardization for between-scanner volume-measurements. It 

is worth mentioning that there are several more available software packages and that their accuracy assessment is warranted.   
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Figure 1. Example of segmentations for 1 subjects on the 3T GE scanner and the first scan (un-preprocessed). Please note that CAT12 and SIENAX+FIRST have different color scales. 

 

 

Figure 2. Heatmap of the ICC for Consistency (95% confidence interval) for all three pairwise scanner combinations for the un-preprocessed T1w images.  

Fas
tS

urf
er

 

Fre
eS

urf
er

Sam
se

g

SIE
N
A
X

C
A
T12

Syn
th

Seg
 

400

500

600

700

800

900

Gray matter volume

Software

V
o

lu
m

e
(m

l)

Philips

GE

Toshiba

✱✱✱

✱✱✱

✱✱✱

✱✱✱

✱✱✱

✱✱✱

✱✱✱

✱✱✱

✱✱✱

✱✱

✱✱✱

✱

✱✱✱

✱✱✱

✱

✱✱✱

✱✱✱

 

Figure 3. Boxplot (Tukey, line at median) of the total gray matter volume measurements  

grouped per scanner and software for the un-preprocessed images. * p<.05, ** p<.01, *** p<.001. 
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Figure 4. Boxplot (Tukey, line at median) of the white matter volume measurements grouped per scanner and software.  

Note that the volumes for FastSurfer, FreeSurfer, SAMSEG and SynthSeg are lower because these only consider the  

cerebral white matter. * p<.05 ** p<.01 *** p<.001. 
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Introduction: In cardiac T1 Mapping, the signal intensity is commonly modelled as a non-linear function of inversion time,  parameterized by a set of variables. 

Estimation of these parameters involves a non-linear parametric fitting procedure. The minimum mean square error (MMSE) estimator is most widely used and can 

be interpreted as a maximum likelihood estimator under the assumption that the additive measurement noise is a zero-mean stationary Gaussian process. However, 

in the MR T1 mapping data, the noise may not follow a Gaussian model, especially as cardiac motion (or imperfect motion correction) can give rise to outliers (i.e. 

misalignment in structure) for fitting. 

To achieve a robust T1 estimate with improved robustness to motion-induced outliers, we propose to employ M-estimators [1] for non-linear parameter estimation of 

cardiac T1 mapping. The loss function of an M-estimator is designed in a way that outliers will have a reduced impact on the final estimate. In this work, we evaluate 

three M-estimator variants on two types of MR T1 mapping sequences: Modified Look-Locker Inversion Recovery (MOLLI) [2] and Saturation Pulse Prepared Heart 

rate independent Inversion-Recovery (SAPPHIRE) sequence [3]. 

Methods An M-estimator replaces the ℓ2-norm in MMSE with a robust loss function 𝜌: 

𝜃∗ = arg min ∑ 𝜌 (|𝑦𝑘 − 𝑓𝜃(𝑡𝑘)|2)
𝑘

= arg min 𝜌(𝑟𝑘
2)  

where 𝑦𝑘 is the measurement at 𝑡𝑘, 𝑓 is the nonlinear signal intensity model parameterized by 𝜃, and 𝑟𝑘 denotes the 𝑘-th fitting residual. We evaluated three M-

estimator variants, namely, the Huber, Cauchy and Welsch losses:  

𝜌𝐻𝑢𝑏𝑒𝑟(𝑟𝑘
2) = 𝑟𝑘

2 ⋅ 𝕀(|𝑟𝑘| < 𝑆) + (2𝑆 ⋅ |𝑟𝑘| − 𝑆2) ⋅ 𝕀(|𝑟𝑘| ≥ 𝑆) 

𝜌𝐶𝑎𝑢𝑐ℎ𝑦(𝑟𝑘
2) = 𝑆2 ⋅ ln(1 +

𝑟𝑘
2

𝑆2
) 

𝜌𝑊𝑒𝑙𝑠𝑐ℎ(𝑟𝑘
2) = 𝑆2 ⋅ (1 − exp(−

𝑟𝑘
2

𝑆2
)) 

where 𝕝(⋅) is the indicator function, and S is a user-defined parameter to adjust the tolerance to the residual error. In this work, we set S adaptively: 𝑆 = 𝑟𝑚𝑖𝑑 ⋅
𝕀(𝑟𝑚𝑖𝑑 < 𝑟𝑡ℎ) + 𝑆𝑚𝑖𝑛 ⋅ 𝕀(𝑟𝑚𝑖𝑑 ≥ 𝑟𝑡ℎ), where 𝑟𝑚𝑖𝑑  is the median of the absolute MMSE residual error. The error median 𝑟𝑚𝑖𝑑 reflects the residual distribution of inliers 

in the presence of a moderate number of outliers. However, a high proportion of outliers may cause severe failure of MMSE, and consequently an elevated 𝑟𝑚𝑖𝑑 much 

higher than a predefined threshold 𝑟𝑡ℎ. In such cases, we set S as a limited value 𝑆𝑚𝑖𝑛 to curb the estimator’s tolerance to residual errors. The Huber loss is a 

combination of ℓ1- and ℓ2-norm losses, which suppresses the influence of outliers if 𝑟𝑘 is large. In contrast, the other two loss functions, the redescending functions, 

ignore outliers completely as the residual error approaches infinity (hence enforcing sparsity). The Welsch loss tends to ignore more outliers than the Cauchy loss at 

a fixed 𝑆.  

In our experiments, we solved the optimization problem with non-derivative based simplex-search solver, with the initial value set as the MMSE estimate. The MMSE 

and M-estimator variants were evaluated on 50 MOLLI scans (3.0T Ingenia, Philips Healthcare, Best, The Netherlands), in total 131 short-axis slices, with or without 

motion correction (MOCO) [4] , and on 12 SAPPHIRE scans (3.0T Siemens Magnetom Prisma, Siemens Healthineers, Erlangen, Germany) without MOCO, in total 

119 short-axis slices. The SD error map was estimated for each T1 map using the definition in [5]. The myocardium regions were manually delineated as the region 

of interest (ROI). 

Results and Discussions: Figure 1-a) illustrates an example of parametric fitting with motion-induced outliers, where the Cauchy M estimator yields a robust fitting 

to the majority of measurements. The statistics of the mean SD error in the myocardium ROI are shown in Figure 1-b) and 1-c), respectively. For the MOLLI scans 

without MOCO, all three M-estimator variants reduced the mean myocardial SD error significantly. The largest reduction is observed for the redescending variants, 

the Cauchy and Welsch losses, from 49.3 ± 16.6 ms (MMSE) to 41.6±16.6 ms (Cauchy), p < 0.001 by paired T-test. On the SAPPHIRE scans, the mean myocardial 

SD decreased slightly from 72.6±8.3 ms to 70±6.5 ms with the Cauchy loss, with p=0.02. In comparison to the MMSE estimator, the Cauchy estimator had a bias of 

-12.9 ± 14.3 ms on motion-corrected MOLLI scans and 20 ± 12.2 ms on SAPPHIRE scans, in terms of the estimated myocardial T1 values. Figure 3 shows the 

estimated T1 and SD maps of an exemplar MOLLI and SAPPHIRE acquisition, both without MOCO. From the MOLLI images, it can be observed that the sharpness 

of the myocardial border (lower septum) slightly improved when using the M-estimators, with reduced SD error in the same region. However, the Welsch variant can 

potentially introduce noise susceptible voxels in the estimated T1 map, as the fit may become instable if too many measurement points are discounted. 

Conclusion: Nonlinear parameter estimation in quantitative cardiac T1 mapping can be realized by the M-estimators, which are more robust to non-Gaussian noises 

and motion-induced outliers than the conventional MMSE. Our study showed that M-estimators were able to significantly reduce the SD error in T1 map estimation 

for both MOLLI and SAPPHIRE sequences, in comparison to the MMSE estimator. The Cauchy variant outperformed other variants in terms of SD error reduction 

and solution stability. 
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Synopsis: Quantitative cardiac T1 mapping involves nonlinear parameter estimation after MR acquisition. The widely used minimum mean square error (MMSE) 

estimator assumes Gaussian additive noise, and can be sensitive to outliers of non-Gaussian nature, such as those caused by cardiac motion. In this work, we propose 

to apply robust loss functions, which are part of the M-estimator family, with increased robustness to outliers. Experiments on MOLLI and SAPPHIRE sequences 

showed that the M-estimators were able to improve the T1 estimation robustness, significantly reducing the standard deviation (SD) error of the estimated T1 map in 

comparison  MMSE. 
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Figure 1. (a) A robust fitting example with outliers induced by motion; (b) Mean SD error within the myocardium region of all MOLLI scans (N=131); (c) Mean SD error within the myocardium region of 

all SAPPHIRE scans (N=119). 

 

Figure 2. The correlation and Bland-Altman plots of estimated myocardial T1 medians using MMSE and Cauchy on MOLLI (left) and SAPPHIRE (right) scans. 

 

 

Figure 3. Two examples of the estimated T1 map and SD error map from MOLLI and SAPPHIRE, respectively. White arrow in the upper panel indicates region of improvement in fitting. 
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Synopsis: MR-STAT is a quantitative MRI technique that obtains multiple tissue parameter maps (e.g. T1, T2) from a single short scan. In this study we perform 

an accuracy and repeatability assessment using a Cartesian FISP based sequence by repeatedly scanning Europsin gel tubes and comparing the results against 

reference measurements. We observe coefficients of variation between 0.5% and 1.9% for T1 and between 2.0% and 7.2% for T2. The mean relative errors as 

compared to the reference measurements are -1.5% for T1 and 5.8% for T2. 

 

Introduction: MR-STAT1 is a quantitative MRI technique that allows multiple quantitative tissue parameter maps (e.g. T1, T2 and proton density) to be 

reconstructed from a single, short transient-state scan. A large-scale non-linear inversion problem is solved in which the parameter maps are directly fitted against 

the measured time-domain data. In previous work, the feasibility of the MR-STAT approach has been demonstrated in-vivo2. For clinical adoption of MR-STAT, 

accuracy, repeatability and reproducibility of reconstructed quantitative values is of high importance.3 In this study we perform an accuracy and repeatability study 

of MR-STAT using a Cartesian FISP-based sequence by scanning a phantom consisting of gel tubes over multiple sessions and comparing the results against 

reference measurements. 

 

Methods: A 2D gradient-spoiled gradient-echo pulse sequence with a linear, Cartesian gradient encoding scheme was employed. At each TR, the flip angle 

changed according to an optimized pattern that was generated using the BLAKjac4 technique (Fig. 1). The TR and TE remained fixed throughout the sequence at 

7.5 ms and 3.8 ms, respectively. The sequence was preceded by a non-selective adiabatic inversion pulse. Per scan, a total of 1344 readouts were acquired in 10 s. 

Twelve tubes with gadolinium-doped gel (TO5, Eurospin II test system, Scotland, Fig. 2) were scanned on two different days on a 3T MR system (Elition, Philips 

Healthcare, Best, The Netherlands) using thirteen channels of the vendors receive headcoil. Each day, the gel phantoms were scanned four times over two separate 

sessions. Between the sessions, the phantom was removed and repositioned resulting in sixteen separate measurements. The scanner room temperature was 

measured at approximately 22 degrees celcius each session. 

Prior to reconstruction, an SVD compression was used to combine the measured data of all channels to single virtual coil data. The MR-STAT reconstructions were 

then performed on an NVIDIA Tesla V100-PCIE-16GB GPU card5 and the reconstruction software was written in the Julia programming language6. Flip-angle 

dependent slice profile corrections were applied as well as a B1 correction based on a separate B1 reference measurement7. ROIs were drawn manually in the T1 

and T2 maps to compute mean values per tube. 

Gold standard measurements to obtain reference values for T1 and T2 were also performed. To obtain reference values for T1, a single-echo inversion recovery 

scan with inversion times of [100, 200, 400, 700, 1100, 1600, 2200, 2900] ms was performed. To obtain reference values for T2, a single-echo spin-echo scan with 

echo times of [20, 30, 50, 80, 120, 170, 230, 300] ms was performed. The T1 and T2 maps were obtained by voxel-wise fitting of a mono-exponential signal model 

to the data. 

Results: In Fig. 3 mean T1 and T2 values in the ROIs in each tube are plotted for the sixteen measurements. For each tube, the coefficient of variation is computed 

as the standard deviation of these values, divided by the mean. The coeffcients of variations are between 0.5% and 1.9% for T1 and between 2.0% and 7.2% for T2.  

In Fig. 4 Bland-Altman plots of relative differences of the mean values per ROI as compared to the ground truth reference measurements are shown. The mean bias 

for T1 is -1.5 % and for 5.8 % for T2. Almost measurements fall within the 95 % limits of agreement, which is determined as the mean difference +- 1.96 times the 

standard deviation.  

Discussion: The coeffcients of variation as well as the mean relative errors for T1 are generally lower than for T2. We hypothesise that, on the one hand, this is due 

to the strong T1 encoding coming from the inversion pre-pulse. On the other hand, inaccuracies in the measured B1 maps8 mostly propagate into the T2 maps. 

Since repositioning the phantom changes the B1 field in each tube, higher errors compared to the reference method as well as higher variations between the MR-

STAT scans are therefore expected for T2. Furthermore, inaccuracies in the slice profile estimation also have a stronger impact T2 than on T1. The results for T2 

could potentially be improved by using a more accurate slice profile model9, employing T2-prep pulses10 and/or incorporating phase based T2 mapping 

techniques11.  

In future work, the reproducibility of MR-STAT on the Eurospin phantom across different MR systems will also be assessed, as well as a comparison study against 

other qMRI methods like MR Fingerprinting12. In-vivo assessments will also be performed because, compared to gel phantom scans, additional signal model 

imperfections are present (due to e.g. ow, motion, partial volume effects) that may impact the outcomes.  

Conclusion: The MR-STAT scans show high repeatability (coefficients of variation between 0.5% and 1.9% for T1 and between 2.0% and 7.2% for T2) and 

accuracy (mean relative error of -1.5 % for T1 and 5.8 % for T2) across a wide range of T1 and T2 values in gel phantom measurements.  
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Figure 3: Repeatability assessment of the MR-STAT scans. Mean T1 and T2 values per manually drawn ROIs in the tubes were computed for each of the sixteen measurements and are 

shown in the top row. The four sessions (with four measurements each) are separated by vertical lines: the gray lines separate sessions within one day, the red line separates the two days. 

The coefficients of variation (relative standard deviations) are shown in the bottom row. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Flip angle train and gradient encoding scheme used in the MR-STAT 
acquisition. The sequence was preceded by and adiabatic inversion pulse and 

the TR and TE remained fixed throughout the sequence at 7.5 ms and 3.8 ms, 

respectively. Per measurement, a total of 1344 readouts were acquired in 10 s of 
scan time. 

Figure 1: Setup of the twelve Eurospin gel tubes that were scanned in four sessions 
spread over two days, with four scans per session, resulting in a total of sixteen 

measurements. 

Figure 4: Mean T1 and T2 values per tube obtained with MR-STAT are compared against the reference values in the top row. The four sessions (with four measurements each) are 
indicated with different colors Blant-Altman plots showing relative differences of mean T1 and T2 values are presented in the bottom row. The mean relative differences are indicated by 

the red dashed lines. Almost all measurements are observed to fall within the limits of agreement (1.96 times the standard deviation of the relative errors).  
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Synopsis: Pelvic organ prolapse (POP) is a common problem in women, but little is known about treatments. Automatic 3D segmentation of pelvic organs would be 

useful for improving research in this area. This study successfully applies a 3D U-Net for automatic bladder segmentation of upright and supine low-field MRI scans 

from asymptomatic women. The resulting network will probably also perform well on data from POP patients. Further improvements are expected when the training 

data is completed. Future work will focus on segmentation of additional pelvic organs. 

Introduction: Pelvic organ prolapse (POP) is a common problem in women.1 Several treatments exist, but these often result in recurrences.2,3 Therefore, we perform 

research to gain more insight in POP, using low-field MRI.4 Currently, POP is quantified in 2D MR images, but this is not sufficient to analyze the complexity of this 

pelvic pathology.  

Additional information on organ position and orientation can be obtained from 3D segmentation, as shown in Figure 1. Furthermore, 3D organ segmentation is useful 

for surgical planning and finite element simulation for biomechanical analysis of POP.5  

Since manual segmentation is time-consuming (± 6 hours for Figure 1), an automatic method is desired. Research by Feng et al.6 has shown promising results for 

automatic segmentation of pelvic organs with blurry boundaries from 1.5 tesla (T) images, scanned in supine position. Upright MRI scanning provides better insight 

into the true degree of prolapse7, but this is only possible with low-field MRI, resulting in lower image quality. Moreover, the variety in bladder shapes makes 

automatic segmentation challenging.  

This study investigates the application of a 3D U-Net for automatic segmentation of pelvic organs from 0.25T supine and upright MRI. This project focuses on the 

segmentation of the bladder, which is a relevant marker for POP as it is prolapsed in most POP patients. 

Methods: In order to assess the healthy anatomic situation, the pelvic organ position was first analyzed in asymptomatic subjects. The study included 44women 

without POP symptoms, between 19 and 65 years of age. Subjects were scanned in upright and supine position using a 0.25T MRI scanner(G-scan Brio, Esaote SpA, 

Italy) with a 3D bSSFP sequence (TE/TR: 4/8 ms, flip angle: 60°, acquired resolution: 2.02x2.02x2.5mm³, FOV: 250x250x122mm³, total scan time: 5:02 min). 

Images in both body positions are acquired in the same image orientation. 

In total, 88 scans were made (one supine and one upright scan per participant). Manual annotations of the bladder were obtained in 58 scans by a single expert using 

3D Slicer (v.4.11.2021-02-26). These data were randomly divided into a training (24 scans), validation (18 scans), and test set (16scans), ensuring that scans from a 

single subject were in the same set. The proposed architecture is a modified 3D U-Net8 (Figure 2), implemented with MONAI9. The network was optimized using an 

Adam optimizer with Dice loss, a learning rate of 5e-4 and a weight decay of 1e-6. We used early stopping during training, which resulted in 658 epochs. 

For evaluation of our network, we used the Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD) in mm. The resulting network was also applied to a scan 

from an asymptomatic subject whose bladder had prolapsed to emulate the future performance of the network on scans of POP patients. 

Results & Discussion: Table 1 shows the performance metrics of the 3D U-Net on the validation and test datasets. Figure 3 shows that the manual segmentation and 

the automatic segmentation by U-Net in three slices of a 3D upright scan from a single woman correctly align (DSC=0.93, HD=12.09 mm). These results show that 

bladder segmentation from 3D low-field MRI is promising.  

Figure 4 shows the scans of four different situations (upright, supine, prolapsed, and unsuccessful) overlayed with the manual and automatic segmentation. Figure 4a 

and 4b show that segmentation is successful in both supine and upright positions. Furthermore, Figure 4c indicates successful automatic segmentation of a prolapsed 

bladder in an asymptomatic woman. This suggests that the resulting network will also be applicable to scans from POP patients, with little or even without additional 

training on POP scans. Moreover, segmentation time was greatly reduced, from 10-60 minutes for a manual bladder segmentation, to only a few seconds by U-Net. 

Figure 4d shows an example of incomplete segmentation. In the near future, we will extend our training set with additional annotated images, what will probably 

improve the robustness of the model.  

Future research will focus on the automatic segmentation of additional pelvic organs (uterus, rectum, os pubis, spine) with the same model to further facilitate pelvic 

research on, e.g., prolapse, pessary positioning and before and after POP treatment comparisons. 

Conclusion: This research shows promising results for automatic segmentation of the bladder from low-field upright and supine 3D MRI in asymptomatic women, 

leading to an enormous reduction in segmentation time. This allows comparing bladder position before and after treatment in 3D, which is useful for research on 

improving therapy for POP. 
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Figure 1: Sagittal view on 3D model of the pelvic area, manually 

segmented from a 3D scan of a POP patient, wearing a pessary. 

Figure 2: The architecture of the 3D U-Net and its dimensions. 

Table 1: The mean Dice score, Hausdorff distance (in mm), and their standard deviations for the validation 

and test data. 

Figure 3: The manual segmentation (green) and automatic segmentation by U-Net (red) in three slices of a 3D upright 

scan from a single woman. DSC=0.93, HD=12.09 mm. 

Figure 4: The scans of four different situations (A: upright, B: supine, C: prolapsed, D: unsuccessful) overlayed with 

the manual (green) and automatic (red) segmentation, as well as the overlap of these two segmentations (yellow). 
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Synopsis: Sodium MRI offers great potentials to be a clinical marker for disease states. Besides the single quantum signal, the triple quantum signal of sodium 

could provide novel and complementary information. 3D volumetric sodium multi-quantum coherences imaging, however, is inherently slow as it requires 

specific phase cycling. In this work we show that compressed sensing can be applied to triple-quantum imaging and in addition, we present a multi-

dimensional compressed sensing model that is specifically suited for triple-quantum imaging. The model jointly reconstructs multi-dimensional multi-

quantum coherences data by utilizing total variation to optimally exploit sparsity in each imaging dimension. 

Introduction/ Purpose: The signal of sodium (23Na) MRI is correlated to the vitality of cells and therefore, offers great potentials as an important clinical marker 

for disease states1. 23Na nuclei exhibit a quadrupolar moment, that in a multi-radiofrequency experiment, resolves single and triple quantum signals (SQ 

and TQ). The TQ signal is very sensitive to its sodium environment and especially to the intracellular compartment2, yielding the potential to provide 

further important information about the tissue and the state of the disease3. 
23Na multi-quantum coherences (MQC) imaging is an inherently slow process and thus not suited for the clinical routine yet. Owed to this, its clinical 

value remains yet unknown. Compressed Sensing (CS) has been established to speed up MR imaging by randomly undersampling k-space and iteratively 

reconstructing the data by assuming sparsity in some transform domain4. 3D MQC imaging, despite the low SNR, is well suited for CS reconstruction as it 

produces very sparse data in its multi-dimensional space. Improved reconstruction results are achieved by exploiting sparsity in all imaging dimensions 

simultaneously5. In 3D multi-echo multi-quantum imaging, a temporal and a phase cycle dimension are added. Conclusively, by exploring 23Na MQC 

undersampling to reach acceleration and leveraging CS a priori to maintain image quality enables to accelerate 23Na MQC imaging. We present phantom 

and in-vivo results to show for the first time applicability of conventional 3D and multi-dimensional 5D CS to accelerate 23Na MQC imaging. 

Methods: Imaging was performed on 3T MRI (Siemens Trio, Erlangen, Germany) system with a 1Tx/Rx dual-tuned 23Na/1H head coil (Rapid Biomedical GmbH, 

Rimper, Germany). Prior to the MQC scans, B0 shimming was repeated with a 1H-based vendor provided 3D shimming routine until accurate 

convergence. A home-built flip angle calibration sequence was used to calibrate global 90°RF pulses. The optimal evolution time 𝜏 was determined from a 

global TQTPPI spectroscopic prescan, followed by an offline fit. Cartesian imaging of simultaneous single and triple quantum 23Na (CRISTINA6), a multi-

echo three-pulse sequence was extended to 3D and improved to only sample the first echo asymmetrically. Triple-quantum filtered images were obtained 

with the following parameters: 10 TEs with TE= 1.66ms (asymmetric first echo) with ΔTE=4.9ms and receiver bandwidth 200Hz/px. Time between 

second and third RF pulse was kept as short as possible and RF pulse duration was set to 500ms. 

Phantom: FoV 260x260x240mm, matrix size 32x32x12, TR=140ms, evolution time 𝜏𝐸𝑣𝑜=8.1ms. Phase increment Δ𝜙=60° averaged over 8 acquisitions, 

TA=80min. 

In-vivo: Two volunteers (25±1 year), FoV 234x234x200mm, matrix size 24x24x10, TR=150ms, the evolution time 𝜏𝐸𝑣𝑜=8.9ms. Phase increment Δ𝜙=60° 

averaged over 7 acquisitions, TA=54min. 

The phantom and in-vivo data were retrospectively undersampled with 3D variable density Cartesian patterns7 varying along the phase-cycle and 

averaging dimension. Undersampling masks were density-adapted weighted according to Schoormans et al.8. The constrained optimization problem for 3D 

total variation CS is described as: 

3D CS: min
𝑢

𝜆𝑥,𝑦,𝑧‖∇𝑥𝑢, ∇𝑦𝑢, ∇𝑧𝑢‖2  𝑠. 𝑡. ‖ΦF(𝑢) − 𝑓‖2
2 < 𝜎2 

Due to MQC's multi-dimensional structure, the constrained problem for multi-quantum imaging, however, can be jointly solved by adding two additional 

regularization terms yielding the following optimization problem: 

5D CS: min
𝑢

𝜆𝑥,𝑦,𝑧‖∇𝑥𝑢, ∇𝑦𝑢, ∇𝑧𝑢‖2 + 𝜆𝑇𝐸‖Ψ𝑇𝐸𝑢‖2 + 𝜆𝑝𝑐‖Ψ𝑅𝑒𝑝𝑢‖
2

  𝑠. 𝑡. ‖ΦF(𝑢) − 𝑓‖2
2 < 𝜎2 

with 𝑢 being the image one wants to reconstruct, ∇x,y,z , Ψ𝑇𝐸 and Ψ𝑝𝑐  representing the sparsifying transform operators for total variation and Fourier 

transform along the dimensions, respectively. 𝜆𝑥,𝑦,𝑧, 𝜆𝑇𝐸 and 𝜆𝑝𝑐 are spatial, temporal and phase cycle sparsity weighting parameters, respectively, which 

enable to control sparsity weightings for each dimension separately. The second term represents the data fidelity term with Φ𝐹 indicating the partial 

Fourier transform followed by random undersampling, 𝑓 representing the measured data in frequency domain and 𝜎 being the signal variance noise. The 

Split Bregman Method9 was used to solve the stated optimization problems. All computations were performed in MATLAB (MATLAB R2020a, 

MathWorks, Natick, MA) within ~400 seconds utilizing GPU computing. Reconstruction quality was evaluated by computing the coefficient of 

determination (R2) between signals' average intensity and 23Na concentration in the phantom vials. 

Results: Figure 1 shows retrospectively undersampled phantom data that was reconstructed with conventional zero-filling followed by an inverse Fourier 

transform, standard 3D CS and the proposed multi-dimensional 5D CS model. Figure 2 depicts retrospectively undersampled in-vivo brain data from 

volunteer a) that was reconstructed with conventional zero-filling followed by an inverse Fourier, 3D CS and the proposed 5D CS model. For phantom as 

well as in-vivo data, the 5D CS model provides superior artefact suppression when compared to conventional 3D CS. Figure 3 shows retrospectively 

undersampled in-vivo brain data from two volunteers that were reconstructed with the proposed 5D CS model. 

Discussion: Retrospective undersampling only was chosen, because the TQ signal changes rapidly due to inhomogeineities or heating of the tissue, which makes 

similarity comparison impossible. Denoising is enhanced in the 5D CS model, from sparsity being promoted with two additional regularization terms. 

Furthermore, additional information captured in the TE dimension enables to preserve image information, see arrow 1 Figure 3b. Further improvements are 

expected by conducting measurements on 7T as well as utilizing a multi-channel receive coil with parallel imaging techniques. 

Conclusion: We have shown that the CS scheme can be used for 23Na MQC. Furthermore, we developed a TQ-specific CS model that provides superior artefact 

suppression while robustly reducing acquisition time in-vivo by a factor of 2. 
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Figure 1: The fully sampled acquisition was retrospectively undersampled by preserving 40% of phase-encode steps and then reconstructed. Compared to competing methods, the proposed 
5D CS technique improves aliasing artefact suppression. Linear relationship between signals' average intensity and 23Na concentrations were: fully sampled R2

original,SQ= 0.95 and R2
original,TQ= 

0.93, R2
3DCS,SQ= 0.90 and R2

3DCS,TQ= 0.91, R2
5DCS,SQ= 0.91 and R2

5DCS,SQ= 0.92. All vials contain 4% agar and NaCl concentrations ranging from 60 to 154mM 

Figure 2: Reconstruction results of in-vivo brain SQ and TQ data for different reconstruction algorithms for volunteer a. The fully sampled acquisition was retrospectively undersampled by 

preserving 45% of phase-encode steps and then reconstructed. Compared to competing methods, the proposed 5D CS technique improves aliasing artefact suppression. The arrows indicate 

regions with the most significant changes. When compared to the zero-filled reconstruction, it is observable that CS enables to reconstruct images more accurately (arrows 1, 2). 

Figure 3: CS reconstruction results for two volunteers (a, b) with the proposed 5D CS model. Arrow 1 indicates a well preserved reference vial, which is barely observable in the original data. 

The 5D CS model takes advantage of exploiting sparsity in all imaging dimensions, which provides more information for the reconstruction of the image, when compared to 3D CS. However, 

the reconstruction results for volunteer B exhibits slight blurring as well as lower signal intensity peaks (see arrow 2). 
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Synopsis: Mechanical properties of the human brain can be altered by a variety of pathologies. These properties can be estimated from in vivo MRI measurements 

of brain tissue displacements as induced by the heartbeat. Previously obtained 7T MRI displacements measurements were used to reconstruct stiffness parameters 

using a subzone-based non-linear inversion scheme. Various structures of the brain can be observed in the reconstructed parameter distributions, and the results show 

good test-retest reliability. The preliminary results show promise of this approach to yield non-invasive assessment of brain tissue microstructure as a tool to investigate 

brain disease. 

 

Purpose: A variety of pathologies can alter the microstructure of human brain tissue. In general, changes in human tissue can be quantified using Magnetic Resonance 

Elastography (MRE), where harmonic steady-state mechanical waves are induced at a region of interest. The resulting tissue displacements can then be measured 

using phase-contrast MRI measurements and can be used to reconstruct mechanical properties of the tissue. However, the brain is enveloped in cerebral meninges 

and the cranium, which dampen extrinsically applied vibrations. Alternatively, mechanical properties of the brain can be estimated from in vivo MRI measurements of 

brain tissue deformation as induced by the heartbeat1,2. Recently, the quality of these deformation measurements was improved significantly using ultrahigh field (7T) MRI3. 

This data, however, has not yet been tested for its usability for reconstruction of brain tissue stiffness. The purpose of this project is therefore to reconstruct brain stiffness 

parameters from 7T MRI measurements of the displacements resulting from intrinsic, cardiac-induced vibrations, and to assess the test-retest reliability. 

 

Methods: We used data from a previously described 7T MRI study, which used Displacement Encoding with Stimulated Echoes (DENSE)3. The data consisted of 3D 

displacement measurements (1.95x1.95x2.2 mm resolution), time-resolved over the cardiac cycle (15 cardiac phases), for eight subjects, including a repeated scan after 

repositioning of the subject. The tissue displacements over the cardiac cycle were converted to the harmonic domain by Fourier Transformation of each voxel. Stiffness 

parameters were then reconstructed at the first harmonic frequency (approximately 1 Hz) by applying a 3D subzone-based non-linear inversion (NLI) scheme4. A 

viscoelastic model of the brain was used, yielding the complex parameters shear storage modulus, shear loss modulus, λ-modulus, and damping ratio as stiffness 

parameters of interest. In this model for low frequencies, only relative distributions of these stiffness parameters can be recovered for reasons described elsewhere4, 

resulting in arbitrary units of the reconstructed parameters. They were therefore normalized between zero and one and the unit of stiffness is renamed from Pa to Pã. 

Finally, the shear stiffness µ can be calculated from the reconstructed stiffness parameters as  

𝜇 =
2|𝐺∗|2

𝐺′ + |𝐺∗|
  , 

where G* is the complex dynamic modulus and G’ is the shear storage modulus.  

 

Results: Figure 1 shows representative preliminary results of the shear stiffness distribution compared to magnitude images for four subjects, while Figure 2 shows 

preliminary results of the real part of λ-modulus for the same four subjects with repeat scans. Similarly, preliminary results of the damping ratio for four subjects with 

repeats can be seen in Figure 3. The mean and standard deviation over all subjects of each quantity is presented in Table 1, where they are calculated separately for 

the grey and white matter.  

 

Discussion: The shear stiffness distribution in Figure 1 shows structural similarities to the magnitude images. In particular, structure around the ventricles show 

consistency between the shear stiffness and the magnitude images as well as between subjects. The consistency of the reconstruction between repeat scans can be 

observed in the λ-modulus distributions in Figure 2 where each scan is directly compared to the repeat scan. Due to the repositioning of subjects between repeats, the 

orientation of the slices might deviate in this preliminary analysis, as the dataset are not yet co-registered. The damping ratio in Figure 3 shows more consistency 

between repeat scans then between subjects. There tends to be a higher damping ratio around the ventricles for each subject, likely due to the tissue around the 

cerebrospinal fluid absorbing a greater amount of vibrational energy. The results reported in Table 1 show similar values for the stiffness parameters between the 

grey and white matter, where the shear stiffness is slightly higher in the grey matter while the λ-modulus is slightly lower. These differences are consistent across all 

subjects, i.e., each subject had higher gray matter shear stiffness and lower gray matter λ-modulus relative to the respective white matter values of the same subject.  

The use of a viscoelastic brain model results in a non-unique solution that renders the units of the stiffness parameters arbitrary. This is not a problem in terms of 

determining structure and relative differences but could lead to significant inaccuracies when clinical elastography depends on quantitative property estimates4. One 

option is thus to move from the viscoelastic model to a poroelastic model, where instead the brain is modeled as an elastic matrix with a porous fluid flow. Not only 

has this been shown to produce better reconstructions that the viscoelastic model at lower frequencies, but also provides unique solutions at such frequencies5. 

 

Conclusion:  In conclusion, 7T MRI measurements of cardiac-induced brain tissue deformation allow for non-invasive estimation of brain stiffness, with good test-

retest repeatability. Stiffness parameters of the brain was reconstructed where the grey and white matter exhibit similar values. This method may be valuable for 

studying the effects of brain disease on tissue microstructure. Further optimization of the NLI reconstruction is still necessary, including testing a poroelastic model 

instead of the currently used viscoelastic model. 
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Figure 1: Representative preliminary results of the shear stiffness distribution (right) compared to magnitude images (left) for four subjects. The color bar corresponds only to the shear stiffness distribution. 

 

 

Figure 2: Preliminary results of the real part of λ-modulus for four subjects with repeat scans. The 

displayed slices are chosen to be approximately the same slice between repeat scans. 

 

 

 

 Grey matter White matter 

Scan 1 2 1 2 

Shear Stiffness [𝐏�̃�] 0.36±0.09 0.38±0.10 0.35±0.09 0.36±0.10 

λ-modulus (real part) [𝐏�̃�] 0.174±0.003 0.172±0.002 0.178±0.004 0.179±0.005 

Damping ratio 0.155±0.021 0.167±0.014 0.135±0.021 0.142±0.015 

 

Figure 3: Preliminary results of the damping ratio for four subjects with repeat scans. The displayed slices 

are chosen to be approximately the same slice between repeat scans. 

 

Table 1: The mean and standard deviation (mean±std) over all subjects of each reconstructed 

quantity, separated for the grey and white matter. 
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Synopsis: We investigated the organisation of the cerebellar digit map with three distinct tasks (flexing/extending/stroking) using B1-shimmed, 

high-resolution fMRI at 7T.  For all tasks, the positions of the COG of the digit representations formed an orderly progression in at least one of the 

lobules. The distance between the motor task activations for flexing and extending of the digits were smaller than from either motor task to stroking 

clusters, indicating a separation between somatosensory and motor clusters in cerebellar lobule V. 

 

Introduction: The human cerebellum is an important part of the sensory and motor networks, though largely unexplored compared to the neocortex, 

due to its highly-foliated cortex and challenging B1 profile at higher fields. There is a sensory somatotopic digit map in the anterior and posterior 

lobules of the cerebellum1 which has been suggested to overlap with cerebellar motor digit representations2. By comparison, in the primary motor 

cortex, flexing and extending are known to result in distinct digit maps3. The precise sensory-motor digit organisation in the cerebellar cortex has not 

yet been explored in adequate spatial resolution. Here, we investigated the organisation of the cerebellar digit map with three distinct tasks 

(flexing/extending/stroking) using RF-shimmed, high-resolution fMRI at 7T. 

 

Methods: Five right-handed participants (22-42years) were scanned in a 7T Achieva (Phillips) with an 8Tx/32Rx (Nova Medical) whole-head coil. 

An RF-shim was calculated following B1 mapping. A 3D-EPI slab covering the cerebellum (1mm isotropic, TR/TE=3300ms/21ms, SENSEy/z= 

2.6/3.27, FOV=182x60x186mm, partial-fouriery/z =0.8, flip-angle=20°) was used for functional acquisitions. Each session consisted of three 15-

minute functional runs in which right-hand digit 1, 3 or 5 was flexed into a ball (motor), extended against an elastic band (motor) or stroked with a 

toothbrush (sensory); 12s ON and 6s OFF (Fig-1). fMRI data were motion/distortion-corrected, the cerebellum was segmented and a GLM (finger-

stimulus>rest) was fitted (FSL, SPM12 and ANTs). Dominant clusters (p<0.05) in lobule V and VIII for each of the three tasks and digits were 

identified by visual inspection. When the cluster extended into the left hemisphere of the cerebellum, the zstat threshold was raised to 4 (n=2). For 

each cluster, the peak z-stat value and the centre of gravity (COG) and direction of the somatotopic gradient in the individual space were extracted. A 

winner-takes-all (WTA) map was generated for each task and participant. For each participant, the median distance between COGs of each digit 

were calculated for each task, as well as the distance between groups of COGs for the different tasks.   

 

Results: Stroking, flexing and extending typically resulted in individual-digit significant clusters in both lobule V (anterior lobe) and lobule VIII 

(posterior lobe) (Fig-2a). The winner takes all (WTA) maps presented all three digits in a semi-orderly progression, but not in consistent direction, 

for most subjects and tasks. While a posterior-anterior (P-A) progression can be seen in Figure 2a in lobule V for all tasks, a P-A direction is found 

for flexing in lobule VIII and a superior-inferior (S-I) direction for extending and stroking. Interestingly, we found consistent bilateral activation in 

lobule VIII during the extending task (Fig-2b), but not for flexing or stroking. 

In lobule V, during the flexing task, a consistent organisation in the P-A direction was found in the COG positions for all participants (Fig-3), though 

not for extending and stroking. In lobule VIII, P-A gradients were found for two participants in all tasks and a left-right gradient for 2/3/3 

participants for flexing, extending and stroking respectively. The S-I gradient was inconsistent for all participants and tasks. 

The distinct tasks resulted in separated series of COGs within the same lobules. Median distances between digit COGs were largest for the flexing 

task (Fig-4a). Between task groups, the largest distances were found between the two motor and stroking task in lobule V (Fig-4b). In lobule VIII, 

groups of COGs were closer together. 

 

Discussion: All three tasks reliably engaged the cerebellar motor regions in lobule V and VIII at single-digit level. More consistently organised 

activation in lobule V and larger distances between tasks compared to lobule VIII indicate that the digit regions cover more cortical surface in the 

anterior lobe, though both regions demonstrated digit maps. 

The flexing and stroking tasks showed mostly unilateral results. In comparison, the extending task resulted in bilateral clusters. This could be due to 

the higher complexity of the task, as more difficult movements have been shown to yield more bilateral activation in M14. 

Larger distances between the stroking task and the two motor tasks could potentially indicate a separation between motor and sensory organisation in 

the cerebellum similar the neocortex, where distinct sensory (S1) and motor digit maps (M1) exist3. A separation between flexing and extending, as 

has been reported in M13, was not apparent in this cerebellar data, though flexing demonstrated a more distinct digit progression compared to 

extending. 

With the current 1mm spatial resolution, individual digit representations could be distinguished, but areas responding to different tasks were close 

and overlapping. To further investigate the intralobular organisation of lobule VIII, a higher spatial resolution and/or surface-based approaches might 

be required. 

 

Conclusion: To conclude, we employed an RF-shimmed high-resolution 7T fMRI acquisition to demonstrate that digit-maps exist both in the 

anterior (Lobule V) and posterior (Lobule VIII) part of the cerebellum, across motor and sensory tasks. We found a separation between motor and 

sensory digit maps, indicating a similar organisation to the neocortex. 
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Figure 1. (a) Flexing (b) Extending (c) Stroking (d) Stimulus timeline 

Figure 2. (a) The significant cluster activation in the sagittal slice of participant 1 for each task and digit. A winner takes all (WTA) map of digit 1, 3 and 5 for each task and lobule. (b) The maximum zstat in 

the significant cluster, the zstat is bold if significant bilateral activation is reported 

Figure 3. The COGs for each digit cluster are presented for each participant and lobule. All tasks with significant results for all three digits were projected onto the sagittal plane, overlaid on a sagittal slice 

of the cerebellum.  The black bar indicates 10mm. Notice the predominant posterior-anterior orientation of the somatotopic gradient in lobule V.   

Figure 1: (a) The median of the distance in three dimensions between D1-D3, D1-D5 and D3-D5 for each participant and lobule for different tasks. (b) The distance between the average COG of each stimulus 

for each participant and lobule. *tasks had to yield three digit representations for a distance to be reported.  
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Synopsis: Cognitive deficits have been reported in children with childhood absence epilepsy (CAE). Regional alterations in morphology in children with CAE are 

likely related to the changes in the underlying network structure. Structural covariance networks (SCNs) based on interregional correlations of cortical thicknesses 

can describe these changes. To relate cognitive performance to network efficiency, individual SCNs are derived from anatomical MR images of the control group 

and one patient. The global efficiency calculated from the resulting SCNs showed a negative relation with cognitive performance for children with CAE. 

Purpose: 

Childhood absence epilepsy (CAE) is a generalized epilepsy and is a common form of epilepsy in school-aged children, typically between 6 and 12 years old. These 

children experience frequent, brief absence seizures during which the child is not aware or responsive. CAE has been considered as a benign condition, since most 

children become seizure-free when reaching adulthood. However, various cognitive impairments have been previously reported in children with CAE compared to 

controls1,2,3. Moreover, a previous neuroimaging study also revealed regional alterations in cortical thickness in children with CAE4. Possibly, these regional changes 

are not independent, but are related to an underlying network structure, which can be described by the structural covariance network (SCN). The SCN is constructed 

using interregional correlations of morphological properties, such as cortical thicknesses, and rests on the assumption that functional and/or axonal connected regions 

share similar patterns of morphology5. The SCNs can subsequently be characterized using graph theoretic analysis, which can provide measures related to network 

efficiency. The aim of this study is to investigate the potential relation between network efficiency of individual SCNs and cognitive performance of children with 

CAE.   

Methods: 

Data acquisition 

Sixteen children with clinically diagnosed CAE (6-12y, 12 male) and 15 healthy, age- and sex-matched control subjects (6-12y, 11 male) were included6. The Full 

Scale Intelligence Quotient (FSIQ) of all participants was assessed using the Wechsler Intelligence Scale for Children third edition (WISC-III). All subjects were 

scanned on a 3.0T (Philips Achieva) scanner using a 32-element phased-array coil. Structural MR images were acquired for each subject using a T1-weighted three-

dimensional turbo field echo sequence (TR = 8.4 ms, TE = 3.8 ms, FA = 8°, voxel size 1 mm3). 

Preprocessing 

As part of the Freesurfer pipeline, T1-weighted images were parcellated into 68 cortical regions based on the Desikan-Killiany atlas, and for each region the mean 

cortical thickness was determined. Subsequently, for each region, potential effects of age, sex and total intercranial volume on the cortical thickness were regressed 

out via linear regression models. 

SCN construction 

For the SCN analysis, each brain region is treated as a node in the network, while the connection strength between the nodes was calculated by the Pearson coefficient 

across a group of subjects. Therefore, an individual SCN cannot be obtained directly. Previously, Saggar et al.7 introduced the Add-One-Patient approach to estimate 

the individual contribution of a patient on the SCN of the control group. In short, the SCN is generated for the control group including one patient. Next, the graph 

metric is calculated from the resulting SCN. This process is repeated for all subsequent patients, resulting in individual graph metrics for each patient. Negative and 

non-significant correlations were not considered, to cope with false positive connections. Subsequently, the resulting adjacency matrix is binarized using sparsity 

thresholds ranging from 85.5%-90% with increments of 0.5%. This allows for comparisons of networks with the same number of connections, which is important 

since the graph metrics are influenced by the sparsity of the network (i.e. the number of connections). The graph metric used to characterize the network efficiency is 

the global efficiency, which is inversely related to the mean path lengths between all pairs of nodes in a sparse graph8. This metric is normalized with respect to 100 

random networks with a preserved degree and strength distribution. A graphical representation of the method is given in Figure 1. All preprocessing and SCN analyses 

were performed in Matlab. 

Statistical analysis 

After visual assessment, a Box-Cox transformation is performed on the non-normally distributed global efficiency values. To investigate whether the global network 

efficiency relates significantly to the FSIQ of children with CAE, a linear regression model was applied. Age and sex are added to the model as covariates. Statistical 

significance was inferred when p < 0.05. 

Results: 

A significant negative relation between global efficiency and FSIQ was found at a sparsity level of 88.5% (β = -1.21, p = 0.03) and 89% (β = -1.21, p = 0.04). This 

indicates that at both sparsity levels, a lower FSIQ is associated with a higher global efficiency in children with CAE. A scatterplot of the Box-Cox transformed global 

efficiency as function as FSIQ at sparsity level 88.5% is shown in Figure 2. 

Discussion & Conclusion: 

This study demonstrates that the global efficiency calculated from individual cortical thickness derived SCNs is significantly related to the FSIQ of children with 

CAE. The negative relation for global efficiency and FSIQ indicates that for a more efficient network the FSIQ score is lower. This is in line with the findings of a 

prior SCN study in epilepsy, which reported that higher clustered (i.e. more efficient) networks related to epilepsy severity, in terms of lower cognitive performance 

scores, younger age at onset and higher seizure frequency9.  From the results presented here, a relation between global efficiency and epilepsy severity cannot be 

formally drawn, therefore, this needs to be further investigated in future work.  
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Figure 2 Scatter plot of Box-Cox transformed global efficiency vs Full Scale 

Intelligence Quotient for a sparsity level of 88.5%. A least squares regression 

line is added for visualisation. 

Figure 1 Graphical representation of the method that estimates the individual contribution of a single patient on the SCN of the control group from which the global efficiency is 

determined. (A) T1-weighted images. (B) Parcellated images. (C) Derive mean cortical thickness for each parcellated region. (D) Adjacency matrix of the SCN based on the control 

group including one patient. (E) Binarized matrix. (F) Random networks derived from original SCN. (G,H) Global efficiency metrics calculated from the binarized adjacency matrices. 

(I) Global efficiency metric for one individual patient. 
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Synopsis: Although research into brain waste clearance has recently gained increasing attention, the driving force(s) as well as the physiological processes involved still remain 

strongly debated. Here, we assess the influence of the cardiac cycle and of respiration on the mobility of cerebrospinal fluid (CSF), thought to be an important waste carrier. We found 

that the cardiac cycle was inducing higher CSF-mobility changes than respiration. 

Introduction 

Despite the increasing evidence that cerebrospinal fluid (CSF)-mediated brain waste clearance is key for cerebral homeostasis, the driving force(s) involved in this process still remain 

unknown1,2: active driving forces have been suggested, such as cardiac pulsations3, respiration4, or vasomotion5, whereas other studies show that drainage only occurs via passive 

mixing mechanisms6,7. Moreover, current knowledge on brain clearance mechanisms is mostly based on experimental studies performed in rodents3,5,8,9. However, findings in rodents 

might not completely reflect CSF-motion in humans since physiological parameters, such as the cardiac or respiratory frequencies, are different between species. Altogether this 

could influence the relative contribution of the different proposed driving forces of CSF-mobility. In summary, getting a better understanding of the underlying mechanisms driving 

CSF-mobility is crucial in order to better comprehend human brain clearance. 

We previously showed that it was possible to use retrospective binning in k-space to measure CSF-mobility changes over the cardiac cycle10. Here we follow up on that work and 

provide quantitative measures of the influence of the cardiac cycle on CSF-mobility and compare it to that of respiration and to a random binning (negative control) in five regions of 

interest (ROIs). 

Methods 

Seven healthy subjects (age: 30±9y) were scanned at 7T (Philips, The Netherlands) using a head transmit coil and a 32-channel receive coil. All provided written informed consent for 

this IRB-approved study. High-resolution (0.45mm isotropic), whole-brain 3D images were acquired with a long echo time turbo-spin echo sequence (TSE) using a pseudo-random 

undersampling scheme10,11 (TSE-factor=146, TE/TR=497/3486ms). As previously described10,12, seven sets of images were acquired for each volunteer to create a tensor: one without 

crushers and six with crushers (velocity encoding gradients of 5mm/s) applied in different directions (Tacq=40 min). 

During the acquisition, the heart rate was recorded using a peripheral pulse unit and the respiration rate using a belt wrapped around the subject’s chest. After acquisition, each scan 

was reconstructed three times using the BART toolbox13: the k-space profiles were retrospectively binned in 6 phases, using retrospective binning to either (1) the cardiac cycle, or (2) 

the respiratory cycle or (3) to random phases (negative control).  

Intra-subject images were registered using Elastix5. CSF-mobility and fractional anisotropy (FA) were modelled for each (cardiac/respiration/random) phase by computing the mean 

eigenvalue of a rank-two positive definite tensor, analogous to Diffusion Tensor Imaging. 

The CSF-signal intensity, the average CSF-mobility and FA as well as the dependence of the CSF-mobility and FA on cardiac/respiration/random phases were evaluated in five 

manually delineated ROIs: fourth ventricle, subarachnoid spaces (SAS) around the middle cerebral artery (MCA), motor cortex sulci, perivascular spaces (PVS) in the basal ganglia 

(BG) and around penetrating arteries of the cortex (Fig.1).  

To quantitatively estimate and compare how CSF-mobility varies across the proposed driving forces, the CSF-mobility change was fitted voxel-wise to a sinus function. The fit 

quality, the maximum amplitude as well as the phase of the maximum amplitude were the output parameters (Fig.4a). 

Results  

CSF-mobility is highest in the SAS around the MCA (0.041±0.006 mm2/s, Fig.2b) and 2-3 times lower in PVS of the BG and of penetrating arteries of the cortex. 

In large CSF-spaces close to the base of the brain (SAS MCA, 4th ventricle) and in PVS of penetrating arteries in the cortex (Fig.2), CSF-mobility fluctuates with the cardiac cycle but 

not with respiration (no difference with random binning). At the surface of the brain, in the SAS of the motor cortex sulci, and in the BG-PVS no dependence with either cardiac or 

respiratory effects is found. The post-processing itself does not artificially generate the observed CSF-mobility changes, since a random binning did not result in a clear pattern across 

phases (Fig.2-3), also shown by the fit quality which was lower than that of cardiac and respiration (Fig.5). Moreover, the percentage of voxels that presented a good fit (R2>0.7) to 

the sinusoidal pattern in the random binning condition was lower than both the cardiac and respiration binning (Fig.4).  

In the regions where the cardiac cycle has an effect on CSF-mobility, an opposite effect in FA is observed (Fig.3), albeit at a smaller scale. 

The amplitude of the CSF-mobility change induced by the cardiac cycle ranges from 4-12% (Fig.5). 

Discussion and conclusion 

The cardiac cycle has the highest influence on CSF-mobility in the SAS around large arteries, in the fourth ventricle and in the PVS of penetrating arteries of the cortex. No or minor 

effects of the respiratory cycle were observed.  

The presence of a wave pattern along a vessel or PVS is the subject of further investigations, and might have smoothed potential stronger effects if CSF-mobility varies with different 

phases within the ROI (e.g. in Figs2&3 that show average profiles over ROIs). 

The opposite effects observed on the FA suggest that the cardiac cycle induces CSF motion perpendicularly to the original motion direction. 

A strength of our dataset is that a direct comparison can be made between the cardiac/respiration/random phases as they all originate from the same datasets (i.e. one dataset 

reconstructed in different ways).  

Future steps will include studying cardiac and respiratory influence on SAS around veins, since it is hypothesized that respiration induced pressure changes mainly affect the venous 

system14. 
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Figure 1: (A) Example of the location of the regions of interest. In each insert, the extracted ROI 

is shown (top of the inserts) next to the CSF-mobility within the ROI (bottom of the inserts). (B) 

Average CSF signal (a.u.) (left), CSF-mobility (in mm2/s) (middle) and FA (a.u.) (right) in the 

different ROIs. Each point represents the mean value over voxels in a given ROI in one subject. 

Figure 2: CSF-mobility change from the mean value over phases (in %) across different driving 

forces in five regions of interest. CSF-mobility change as a function of (A) the cardiac cycle (pink) 

and random phases (grey) and of (B) respiration (green) and random (grey) phases.  

Figure 3: Fractional anisotropy (FA) change from the mean value over phases (in %, 

mean±1.96*SEM over volunteers) across driving forces in five regions of interest. FA change as a 

function of (A) the cardiac cycle (pink) and random (grey) phases and of (B) respiration (green) and 

random (grey) phases. 

Figure 4: (A) Example of the sinusoidal fit applied (in red) to the signal across phases (dotted blue 

line) in three different voxels. The associated fit quality is shown in the insert. (B) Percentage of voxels 

that show a good fit (R2 > 0.7) to the sinusoidal model (relative to the total amount of voxels in the 

ROI) for the cardiac (left), respiration (middle) and random (right) binning in five ROIs. Every colored 

line corresponds to the values in one subject. 

Figure 5: Comparison between the effect of the cardiac (left), respiration (middle) and random 

(right) binning on the fit output parameters: fit quality (top), amplitude of the maximum (%) 

(middle) and phase of the maximum CSF-mobility change (bottom) (see Fig.4A). For the phase, 

only voxels presenting a good fit quality (>0.7) were included. Each colored point represents the 

value in one subject. 
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Synopsis: Laminar-specific fMRI allows neuroscientists to address research questions of directional functional connectivity within and across brain areas. While recent sequence developments allow 
improvements in coverage and mitigations of venous biases, previous attempts of whole-brain connectome datasets turned out to be too artifact-dominated (Mueller 2021) to be neuroscientifically 

applicable. Here we present a new and improved sequence used for acquiring a relatively large open dataset of whole-brain laminar connectivity. Its purpose is to: 1) investigate the reproducibility of 

laminar connectivity results, 2) to benchmark and develop processing pipelines, 3) and to explore which type of new neuroscientific research questions become addressable with laminar fMRI. 

 

Purpose: Laminar-specific fMRI allows neuroscientists to address questions of directional functional connectivity within and across brain areas. While recent sequence developments allow improvements 

in coverage and mitigations of venous biases, previous attempts of whole-brain connectome datasets turned out to be too artifact-dominated (Mueller 2021) to be neuroscientifically applicable. 

Here, we describe our efforts to achieve a new and improved sequence for whole-brain layer-dependent functional connectome mapping. The developed methodology is used to acquire a large openly 

available dataset of cerebral blood volume and BOLD contrast. The purpose of this public dataset is multifold: 

1.) At last year's ISMRM, we proposed a whole-brain protocol (https://cds.ismrm.org/protected/21MPresentations/abstracts/0630.html), which turned out to be unusable due to physiological and scanner 

artifacts (inflow and traveling wave artifact with long TRs Fig. 1). In this year's work, we aim to present solutions to those artifacts.  

2.) We seek to provide a test bed for developing and benchmarking new layer-dependent preprocessing and analysis tools.  

3.) We aim to characterise the layer-dependent signatures of common connectivity networks (Pais-Roldán, 2020) and their replicability. 

4.) We aim to provide at least 50 runs of movie watching clips (14min each) to quantify reliability of laminar connectivity results. 

5.) We want to explore which type of new neuroscientific research questions will become addressable with laminar fMRI. 

 

Methods: Scanning was performed on a SIEMENS MAGNETOM “Classic” 7T scanner while subjects were watching a Human Connectome Project (HCP) movie. For layer-fMRI scanning without 

venous biases, a blood volume sensitive VASO (Lu 2003) sequence was used. We used the MAGEC VASO approach to maintain the VASO T1-weighting across long echo trains (Huber 2020).  

Scanning: This study is based on prior experiments (shown in (Mueller 2021)). In order to find an improved sequence/reconstruction framework for the current study, 9 two-hour sessions in eight 

participants were performed (shown in Fig. 1-2). These newly improved scan/reconstruction parameters were then used for 8 two-hour sessions in the main single participant. These data are openly 

accessible on OpenNeuro (Markiewicz 2021): https://openneuro.org/datasets/ds003216. 5 more two-hour sessions datasets will be available soon. The final parameters that we used are: resolution = 
0.842mm iso, TR = 5.1s (alternating 5.1s/5.2s), 3D-EPI (Poser 2010), GRAPPA 3x2, two segments and 3D-CAIPI 1 (equivalent to GRAPPA 6x1 with pre-phased CAIPI 3) (Poser 2013, Stirnberg 2021), 

TA = 14 min, 5 runs per session, the last two TRs were NORDIC (Vizioli 2021) noise scans (not included in reconstruction so far). This sequence is available via SIEMENS’ C2P ‘app store’ Teamplay. 

Further acquisition parameters: https://layerfmri.page.link/WBprotocol. Respiratory and cardiac traces were recorded for vascular reactivity analyses.  

Data processing: Motion correction (ANTS, Avants 2008), BOLD correction in LayNii (Huber 2021), and segmentation of GM and WM were initially performed in FreeSurfer and then manually corrected.  

Layer-connectivity analysis: To investigate connectivity networks across layers, we performed ICA on run-averaged functional time series independently on three layer groups. For the columns of specific 

layer-profiles, we defined columns (LayNii LN2_COLUMNS), calculated ‘hubness’ (AFNI 3dTcorrMap) and performed PCA (AFNI 3dpc). Then, we highlighted individual layer-profiles and presented 

their columnar distribution across the brain. 

 

Results and Discussion: 

Fig. 1 shows the newly incorporated and tested sequence advancements compared to previous work. The reduction of spatial and temporal artifacts with segmentation and shorter TRs are clearly visible. 
Fig. 2 depicts results from pilot experiments to find the best acceleration scheme (the winner was six-fold acceleration). Fig. 3 depicts the preprocessing quality (alignment to anatomy, layerification in EPI, 

and alignment across runs). Fig. 4 and Fig. 5 exemplify the neuroscientific applicability of the provided data. Fig. 4 depicts the layer-dependent differences of common ICA networks. While the Parieto-

Frontal network, the Visual network, and the Auditory network show consistent topographical distributions across depths, the ‘default mode network’ is interestingly showing considerable deviations. We 
find that the visual and auditory networks show stronger z-scores in superficial and deep layers, compared to middle layers (Fig. 4). This finding might be related to the fact that neurons even in those uni-

modal areas have more feedback synapses from cortical areas compared to feedforward input. When analyzing each session’s data separately, we see consistent layer signatures, demonstrating high 

reliability (Fig. 5A). 

We used PCA analyses across all layer profiles in all columns to explore data-driven approaches of consistent layer profiles across areas. Doing so for movie watching tasks, we find that columns that 
exhibit layer-profiles of inverted U-shapes (feedforward-like) tend to be stronger represented in the parieto-frontal area. Whereas columns with U-shaped (feedback-like) layer-profiles tend to be strongly 

represented in visual areas. 

 

Conclusion: 

At last year's ISMRM, we presented an attempt to acquire a whole-brain layer-specific connectivity protocol, with mixed success. This year, we went through a second iteration of re-considering all 

acquisition and reconstruction choices to reduce the TR, improve the artifact level, and provide another new and improved dataset of 25 runs of whole-brain layer-specific movie watching. 

The open dataset provided here, will be useful for benchmarking developing laminar preprocessing strategies. Furthermore, with the large number of runs provided of the same 14 min movie clips, this 

dataset will be helpful for a comprehensive characterization of the reproducibility layer-fMRI connectivity results. 
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Figure 1. New and improved artifact level (GIF animation) 

Panel A: Segmentation and kz-CAIPI can shorten TRs without ghosting artifacts that are common 

when mixing the low bandwidth direction with the partition direction. This insight allowed us to 

reduce the volume TR from 8.9 s to 5.1 s. 

Panel B: Temporal artifact level of the improved sequence/reconstruction approach. This figure 

presents the temporal VASO signal evolution (demeaned) of movie watching data averaged across 

20 runs (across 4 days). 

Figure 3. Preprocessing quality (GIF animation) 

Panel A: Non-linear alignment quality of a 3T MPRAGE to VASO EPI. Most of the brain is of 

usable quality. 

Panel B: Layerification quality in the EPI space. 

Panel C: Session-to-session alignment quality. The gif animation cycles across 5 separate 

sessions of multiple days.  

Note that the spatially heterogeneous brightness level of the T1-weighted EPI is a feature of 

variable flip angles in the MAGEC-VASO approach and does not affect the functional contrast. 

Figure 2. Finding the best sampling approach 

Panel A: Piloting before scanning the main participant. The middle left sequence (AF = 6, TR = 5.8 

s, CAIPI y shift 3) has an advantageous tSNR efficiency.  

Panel B: Protocol comparison in the main participant. The third column (AF = 6, TR = 5.1 s without 

fat saturation) depicts a good compromise of TR and artifact level. We decided to use this sequence 

for all subsequent scans. 

Figure 4. Layer-dependent differentiation of ICA-determined connectivity networks 

We find that the primary areas (e.g., visual and auditory) are showing stronger z-scores for 

superficial and deep layers. The DMN seems to subdivide into different sub-ROIs for different 

layers. Other networks (e.g., parietal-frontal) are relatively consistent across depths with minimal 

layer-differentiation. Note that the purpose of this figure is to exemplify the neuroscientific usability 

of the provided data.  

Figure 5. Network detection replicability and layer-profile analysis  

Panel A: GLM results of a representative brain network shown 

independently for each day. We can see consistent layer signatures 

for each day's result. 

Panel B: PCA extracted columns with feedforward-like and 

feedback-like layer-profiles. The columns (top left in B) are 

generated with the LayNii command “LN2_Columns”. The lower 

left graphs are the two representative layer-profile PCs. The right 

figures in panel B are the columns with the selected layer-profile 

PCs accordingly. 
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Synopsis: We analyze quantitative values in glioma obtained with MAGiC, which allows obtaining quantitative T1, T2 and PD maps in one single acquisition of less than 6 minutes for a whole brain. The 
maps were obtained before contrast-agent injection in 14 patients with glioma. We investigated the possibility of characterizing tumor regions based on quantitative maps acquired without contrast-agent. 

The results showed significant differences among tumoral tissue, tissue with T1w-enhancement, and normal white matter. Voxel-wise, this allowed to distinguish tumoral tissue but did not allow to 

accurately predicting T1w-enhancement. However, promising results were found predicting T1w-enhancement inside the tumor. 

1. Introduction. The standard assessment of gliomas includes several weighted images1,2. Fast quantitative MR imaging could improve these protocols by reducing scan-time andsystem-variability3–5 but 
must be validated. Characterization of tumor tissue and enhancement prediction using quantitative maps werereported6–9, but focusing only on T16,7 or T28,9. In this work, we characterized gliomas using 

parametric maps obtained using MAGiC acquired before contrast injection and investigated its T1w-enhancement prediction capability. 

2. Methods. Acquisitions were performed after Institutional Review Board approval with GE 3.0T systems (General Electric Medical Systems, USA):GE-MR750 and GE-Signa-Premier. A 16-channel 

Head and Neck array coil was used. After giving informed consent, 14 patients were scanned. The whole brain was acquired in 5min and 34s using MAGiC before contrast-agent injection, with 

TE=92.24ms, TR=4000ms, FOV=224mm, slice-thickness=4 mm and voxel-size=0.875x0.875x5mm3. 

The T1w, T1c, T2Wand T2-FLAIRwere used to segment the gliomas using HD-GLIO10,11. Regions of interest (ROIs) were defined for the non-enhancing-T2-weighted-hyperintensities (T2h) and for T1w-

enhancement (T1e). Also, an ROI1cm around the tumor for the peritumoral area (PER)was defined, other for normal white matter (nWM), and another joining T2h and T1e (TUM).The mean, standard 

deviation (STD), Skewness, and Kurtosis for T1 and T2 was computed inside each ROI. The average across patients and 95% confidence interval (CI) were computed and signed-rank Wilcoxon test used to 

detect differences between ROIs. 

Receiver operating characteristic curve (ROC) analysis12 was performed to distinguish between TUM and nWM; T1e and the rest; and T1e and T2h. We considered T1, T2, the Euclidian norm of T1 and 

T2 (normT1T2) and the Euclidian norm of the logarithm of T1 and T2 (normlog). The optimal operating point was calculated as the highest Youden’s index13. The threshold obtained was applied to the 

quantitative maps. 

A cross-validated ROC analysis was performed to distinguish T1w-enhancement in tumors by the leaving-pair-out14 method. The threshold associated with the Youden’s index was applied to classify the 

left-out-pair. Then the average AUC, sensitivity, specificity and accuracy were calculated. 

3. Results. Tables 1 and 2 report tables with the ROIs statistics. 

Voxel-wise. To discriminate between TUM and nWM, normlog was the metric with the highest AUC (0.95), with sensitivity=92.03%, specificity=86.88% at threshold=8.44. For distinguishing T1w-

enhancement, normT1T2 had the highest AUC (0.85), with a priori sensitivity=81.79%, specificity= 71.99% at threshold= 1344ms. 

Figure 1 shows the segmentations for one patient using HD-GLIO and applying the thresholds from the ROC analysis. Voxels with normlog> 8.44 were classified as tumor (TUM*), and with 

normT1T2>1344ms as T1w-enhancement (T1e*). 

 T1w-enhancement. The PDF of the T1, T2, normT1T2 and normlog are plotted for patients with and without T1w-enhancement (Figure 2). Table 3 shows a table with the mean AUC, sensitivity, 

specificity and accuracy obtained from the leave-pair-out analysis. The highest AUC was obtained using T1 and the normT1T2 (0.68).  

4. Discussion. The results show that the distributions of T1 and T2 values differentiates tumor from normal white matter. Regarding voxel-wise T1w-enhancement, the amount of misclassified voxels 

without enhancement as T1e* could lead to false positives. It could be that pre-contrast quantitative images deviate in the enhancing tumor due to some leakage in the blood brain barrier (BBB) not 
appreciable in conventional images15,16, or something else correlated with BBB leakage. However, it is possible that only applying a threshold to the pre-contrast quantitative images has moderate ability to 

detect T1w-enhancement15.  

The analysis done on tumors showed that it could be possible to discriminate between enhanced and no-enhanced tumors. It seems that the process of contrast leakage is correlated with the structural 

information obtained in the pre-contrast scans. But further investigation is needed, with larger cohort of patients. Avoiding contrast agent could mean an improvement for brain tumor patients who need to 

undergo repeated MRI acquisitions.  

Classification of voxels could probably be improved with more advanced techniques.  

5. Conclusions. We showed clear differences in quantitative values for the tumoral and healthy tissue. In glioma, the pre-contrast normT1T2 is predictive for the post-contrast enhancing tumor. This work 

encourages further exploration of quantitative imaging in gliomas with the possibility of reducing scan-time and avoiding contrast-agent administration. 
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Figure 2. Probability density functions of the T1 values (A), T2 

values (B), the norm of T1 and T2 values –normT1T2- (C), and 

the norm of the logarithm of T1 and T2 values –normlog- (D) 

for all the patients showing T1w-enhancement (solid line) and 

for all the patients without T1w-enhancement (dashed line) 

for each region of interest (ROI) (Blue->normal white matter -

nWM-, Red->peritumoral area –PER-, Yellow-> T2 

hyperintensity -T2h-, Purple -> T1w-enhancement -T1e-, 

Green -> T2h + T1e -TUMOR-) 

Table 1.Table withstatistics of the T1 values from all the patients. Column 3: Mean over patients of the T1 ROI statistics. Column 4: 95% CI of the mean over patients. Column 5: P-values of the Wilcoxon 

signed-rank test with the nWM (P-val ROI vs nWM). Column 6: P-values of the Wilcoxon signed-rank test with the tumoral tissue without T1w-enhancement (P-val ROI vs T2h). Column 7: P-values of 

the Wilcoxon signed-rank test with the T1w-enhancement voxels (P-val ROI vs T1e). * indicates p < 0.05. 

ROI ROI statistic Mean (ms) 95% CI (ms) Pval (ROI vs nWM) Pval (ROI vs T2h) Pval (ROI vs T1e) 

nWM 

Mean 993.16 ± 38.20 - < 0.01* 0.02* 

STD 294.04 ± 39.61 - 0.95 0.02* 

Skewness 2.64 ± 0.57 - < 0.01* 0.02* 

Kurtosis 16.19 ± 6.13 - < 0.01* 0.02* 

T2h 

Mean 1353.78 ± 92.41 < 0.01* - 0.02* 

STD 294.68 ± 39.78 0.95 - 0.02* 

Skewness 1.23 
± 0.39 

< 0.01* - 0.16 

Kurtosis 6.00 ± 1.73 < 0.01* - 0.08 

T1e 

Mean 1713.30 ± 53.19 0.02* 0.02* - 

STD 448.03 ± 51.00 0.02* 0.02* - 

Skewness 1.00 ± 0.19 0.02* 0.16 - 

Kurtosis 4.30 ± 0.86 0.02* 0.08 - 

PER 

Mean 1056.78 ± 60.48 0.01* < 0.01* 0.02* 

STD 315.16 ± 65.47 0.24 0.33 0.03* 

Skewness 2.27 ± 0.54 < 0.01* < 0.01* 0.03* 

Kurtosis 13.50 ± 6.28 < 0.01* 0.01* 0.03* 

Table 2. Table with statistics of the T2 values from all the patients. Column 3: Mean over patients of the T1 ROI statistics. Column 4: 95% CI of the mean over patients. Column 5: P-values 

of the Wilcoxon signed-rank test with the nWM (P-val ROI vs nWM). Column 6: P-values of the Wilcoxon signed-rank test with the tumoral tissue without T1w-enhancement (P-val ROI 
vs T2h). Column 7: P-values of the Wilcoxon signed-rank test with the T1w-enhancement voxels (P-val ROI vs T1e). * indicates p < 0.05. 

ROI ROI statistic Mean (ms) 95% CI (ms) Pval (ROI vs nWM) Pval (ROI vs T2h) Pval (ROI vs T1e) 

nWM 

Mean 92.33 ± 4.43 - < 0.01* 0.02* 

STD 48.90 ± 10.61 - 0.04* 0.02* 

Skewness 10.72 ± 1.75 - < 0.01* 0.02* 

Kurtosis 184.88 ± 57.84 - < 0.01* 0.02* 

T2h 

Mean 152.25 ± 16.06 < 0.01* - 0.30 

STD 64.63 ± 12.34 0.04* - 0.02* 

Skewness 4.62 ± 1.13 < 0.01* - 0.08 

Kurtosis 42.38 ± 13.60 < 0.01* - 0.08 

T1e 

Mean 180.05 ± 22.52 0.02* 0.30 - 

STD 130.81 ± 45.67 0.02* 0.02* - 

Skewness 3.57 ± 0.95 0.02* 0.08 - 

Kurtosis 24.92 ± 11.51 0.02* 0.08 - 

PER 

Mean 103.82 ± 9.75 < 0.01* < 0.01* 0.02* 

STD 63.56 ± 24.05 0.01* 0.50 0.16 

Skewness 8.10 ± 1.99 < 0.01* < 0.01* 0.03* 

Kurtosis 111.55 ± 54.74 < 0.01* < 0.01* 0.03* 

Figure 1. Patient 3. Sagittal, coronal and axial planes of the segmentations overlaid on the T1w scan from. Top: segmentation from HD-GLIO, T2-hyperintensity (T2h) 

in orange and T1-enhancement (T1e) in purple. Bottom: using thresholding, voxels classified as tumor (TUM*) in orange and voxels classified as T1w-enhanced 

(T1e*) in purple. The purple T1e* region is overlapped with the orange TUM*. 

 

 

 

 Param Mean AUC (STD) Sensitivity Specificity Accuracy 

T1 

Mean 0.62 (0.03) 59 % 71 % 65 % 

STD 0.65 (0.03) 45 % 86 % 65 % 

Skewness 0.65 (0.03) 59 % 73 % 66 % 

Kurtosis 0.68 (0.03) 73 % 73 % 73 % 

T2 

Mean 0.54 (0.04) 41 % 43 % 42 % 

STD 0.58 (0.03) 29 % 100 % 64 % 

Skewness 0.58 (0.03) 61 % 43 % 52 % 

Kurtosis 0.56 (0.03) 65 % 35 % 50 % 

normT1T2 

Mean 0.62 (0.03) 59 % 71 % 65 % 

STD 0.65 (0.03) 45 % 86 % 65 % 

Skewness 0.66 (0.03) 61 % 63 % 62 % 

Kurtosis 0.68 (0.03) 73 % 73 % 73 % 

normlog 

Mean 0.61 (0.03) 71 % 71 % 71 % 

STD 0.52 (0.04) 73 % 31 % 52 % 

Skewness 0.61 (0.03) 57 % 86 % 71 % 

Kurtosis 0.66 (0.03) 61 % 63 % 62 % 

Table 3.Table with the averaged area under the curve (AUC) of the receiver operating 

characteristic(ROC) analysis on distinguishing between tumors with and without T1w-enhancement 
and its standard deviation between brackets from all the leave-pair-out sets used for cross-validation for 

each statistical parameter. Last three columns report the sensitivity, specificity and accuracy taking into 
account all the sets and the results of the leave-pair-out analysis. 

 

P-053 
 

Abstract Category Methods – Neuro – fMRI 

 

  



 

  

 

I.V. Obdeijn1, L. Alic2, M.H. Lequin1,3, S.L.A. Plasschaert3, W.J.M. van der Kemp1, J.H. Hoogduin1, D.W.J. Klomp1, J.P. Wijnen1, and  
E.C. Wiegers1 

1Department of Radiology, University of Medical Centre Utrecht, Utrecht, the Netherlands; 2Magnetic Detection and Imaging Group, Technical Medical Centre, University of Twente, 

Enschede, the Netherlands; 3Department of paediatric neuro-oncology, Princess Maxima Centre, Utrecht, the Netherlands 
 

 

Acknowledgments / Funding Information: We acknowledge funding from WKZ Research Fund. 

 

 

Synopsis: APTw imaging is a potential imaging biomarker to assess treatment effects in brain tumours, especially at high field MRI (7T) due to improved signal-to-noise-ratio enabling the assessment of 

APTw values in heterogenous tumours. Embedding of APTw imaging in clinical decision making requires insight in the repeatability of APTw imaging. Therefore, we evaluated the repeatability of APTw 

imaging at 7T by using a phantom and in vivo in the human brain subjects. Repeatable and specific APTw maps were obtained at 7T, which facilitate the potential of detecting metabolic changes in brain 

tumours due to treatment.    

 

Introduction:  
Amide proton transfer weighted (APTw) imaging is based upon chemical exchange saturation transfer (CEST) and enables in vivo assessment of tissue-bound mobile proteins and peptides1,2. Promising 
applications of APTw imaging in neuro-oncology include differentiation between high and low grade glioma and between true progression and pseudoprogression3. Furthermore, APTw imaging is reported 

as a potential imaging biomarker for the assessment of treatment effects in brain tumours4,5. At 7T MRI, the improved signal-to-noise-ratio and spectral resolution and prolonged T1 relaxation time enables 

APTw imaging at higher resolution which in turn makes it possible to measure heterogeneity of APTw values in brain tumours relevant for the evaluation of treatment effects1,6,7. For application of APTw 
imaging in clinical decision making regarding treatment effects in brain tumours insight in the repeatability is required. Therefore, the aim of this study is to assess the repeatability of APTw imaging at 7T 

in a phantom and in vivo in the human brain.  

 

Methods:  
A 7T MRI scanner (Achieva, Philips Healthcare, Best, The Netherlands) was used in combination with a 32-channel receive and 8-channel transmit head coil (Nova Medical, Wilmington (MA), United 

States). The APTw images were acquired with a 3D gradient echo sequence with 35 frequency offsets [Δω=0,±0.20,±0.27,±0.50,±1.17,±1.84,±2.60,±2.80,±3.00,±3.20 

±3.34,±3.65,±3.80,±4.20,±6.71,±20.00,±40.00 and S0, Δω=±600.00 ppm] and the following imaging parameters: saturation time= 1.4 (56 block pulses (alternating between two 4-channel quadrature B1 shim 

settings) of 25 ms); TFE shot-interval of 8s (overall TR); B1,rms
+= 2.1 µT;  SENSE factor AP of 2.4, matrix= 128x128x12; FOV= 256x256x24 mm3; voxel size= 2.0x2.0x2.0 mm3; TR/TE= 3.75/1.8 ms; flip angle= 

5°. Image protocol based on a protocol optimized to measure multiple metabolites8. 

A cylindrical phantom filled with 0.9% saline solution and five submerged falcon tubes (Figure 1-A), at pH ~7.0 (range 6.8-7.2; measured with indicator strips), contained solutions of nicotinamide (NAM; 

20, 50 and 100 mM), glutamate (Glu; 10 mM) and glycine (Gly; 20 mM). APTw images in supratentorial and infratentorial brain region were acquired in five healthy subjects (2m/3f; age: 25.8±1.7 years). 

T1w-images were used to position the two CEST slabs along the AC-PC line for the supratentorial slab, and a line between the superior pontine notch and the inferior edge of the quadrigeminal plate for the 

infratentorial slab. The phantom and subjects were scanned twice, with an interval of one week. 

Processing  
Z-spectra were normalized with respect to the unsaturated z-spectral point (S0). B0-correction was performed pixel-wise by defining the position of the minimum of the z-spectrum, shifting, and resampling 

the z-spectrum accordingly. The z-spectra were fitted pixel-wise with a five (in vivo) or six-pool (phantom) Lorentzian model (direct water saturation (DS), magnetization transfer (MT), nuclear overhauser 

effect (NOE), amines, amides (APT), and hydroxyl) using a Levenberg-Marquardt algorithm (see Table 1 for the fitting parameters). All image processing was performed with MATLAB (R2019b, The 

MathWorks, Natick: MA). 

Data analysis    

The fitted APTw values were used to generate APTw maps. For the phantom, circular regions of interest (ROIs) were drawn manually for each solute and APTw map was averaged per ROI. The repeatability 

of the phantom was assessed based on het averaged APTw map of the five solutes by defining the root-mean-squared-deviation (RSMD) and within-coefficient-of-variation (wCV). For the healthy subjects, 
ROIs were defined by applying atlas-based segmentation using the MNI-152 atlas9,10 and Elastix11, see Figure 1. The repeatability was assessed in supratentorial and infratentorial brain regions separately by 

measuring RMSD and wCV per tissue type (i.e. grey matter (GM) ROI, (small) white matter (WM) ROI, and (small) pons ROI (only infratentorial)).  

 

Results:  
Representative averaged z-spectra of a ROI with corresponding Lorentzian fits are shown in Figure 2-A for the phantom, supratentorial and infratentorial brain region. Figure 2-B shows the APTw maps for 

the two individual acquisitions, and for both datasets (i.e. phantom and brain). The boxplots (Figure 3) illustrate similar APTw levels for both timepoints for all ROIs, supported by the wCV for the 
supratentorial and infratentorial brain tissue types (Table 2). The phantom data showed that increasing amide concentration resulted in an increase of the APTw values. The repeatability metrics of the phantom 

shows a RMSD of 0.52 and wCV of 14.28%. For the healthy subjects, the wCV ranged between 4.42% (small ROIs of the pons) and 19.98% (small ROIs of infratentorial WM). 

 

Discussion:  :  
APTw imaging at 7T can be considered repeatable and specific for amides which is of high value in clinical decision making. A preclinical study of orthotopic glioblastoma4 and a clinical study in breast 

cancer patients12 showed a decrease in APTw values of ~25% , in response to cancer treatment. Even within our small ROIs the wCV is lower, which would enable monitoring of treatment effects in 
heterogeneous tumours.   
 
This study uses no B1-correction which may affect the accuracy of APTw values, but is considered not to influence the repeatability as our B1-maps showed no significant change over time within one person. 
However, B1-correction is necessary when evaluating APTw values between the patients, between different hardware configurations or in a long term follow-up. 
 
In conclusion, we showed that APTw imaging at 7T is specific and repeatable thus potentially enabling detection of metabolic changes in brain tumours due to treatment.  
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Figure 2. Z-spectra (panel A) and APTw maps (panel B). Panel A: Example of average z-spectra after B0-
correction in a ROI including Lorentzian functions for visualization (phantom: 50 mM NAM, supratentorial brain 

region: WM parietal lobe, infratentorial brain region: WM cerebellum. Panel B: APTw maps for both timepoints 

illustrated by phantom, supratentorial brain region and infratentorial brain region of one subject.  

 

Figure 3. Boxplots to evaluate the repeatability within each ROI for the 
phantom (A), supratentorial brain region (B), and infratentorial brain region 

(C). The two boxes for every ROI represent measurement at timepoint 1 (light 

blue) and timepoint 2 (dark blue).  

maps for both timepoints illustrated by phantom, supratentorial brain region 

and infratentorial brain region of one subject.  

 

Figure 1. ROIs for the phantom (A), supratentorial brain region (B) and infratentorial brain region (C). The colour bars for 

the different brain tissue types indicate multiple ROIs per tissue type created within one subject. Supratentorial:4 ROIs (i.e 
frontal/ parietal and left/ right) for each tissue type. Infratentorial:2 ROIs (i.e. left/right) for each tissue type in the cerebellum 

and two ROIs for the pons. 

Table 1. Lorentzian fitting parameters for six endogenous contrast 
pools at 7T. A is the amplitude of the z-spectrum (Ssat/S0) at a 

specific pool defined by a chemical shift and FWHM given in ppm 

 

Table 2. Mean ± standard deviation and repeatability metrics of APTw maps of the ROIs belonging to 

the phantom, supratentorial brain region and infratentorial brain region.  
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Synopsis: We extended the use of VASO-CBV to pRF mapping modelling. We show that VASO-CBV data can be used reliably to map polar angle and eccentricity, 

similar to BOLD-based data. In addition, the pRF size increased systematically from V1 to V3 similarly for BOLD and VASO-CBV estimates. The higher 

microvascular specificity of VASO-CBV did not result in smaller pRF size estimates. This result suggests that the vascular contribution to the pRF size is not dominant 

in either VASO-CBV and BOLD-based pRF mapping. 

 

Introduction: The 7T VASO-CBV method has proven to be highly effective for high-resolution fMRI, especially for depth-dependent applications1-5. However, the 

feasibility of using VASO-CBV for advanced cognitive neuroimaging applications has not yet been widely evaluated. We evaluated the feasibility of VASO-CBV in 

the visual cortex using population receptive field (pRF) modeling7. The pRF analysis is a popular method to study the topographic organization of primary sensory 

neural populations8. Since pRF size has both vascular and neuronal contributions, we hypothesize that the higher specificity of VASO-CBV would result in smaller 

pRF sizes than BOLD. In the present study, we first determined the optimal slice orientation for VASO-CBV in the visual cortex. With the optimized slice orientation, 

we extended the use of VASO-CBV to the pRF modeling. 

 

Methods: Six healthy volunteers (5 females, age 32±7 years) participated in the study. Imaging was performed on a 7T scanner (Philips) using a 32Rx8Tx (Nova 

Medical). SS-SI VASO data were recorded using a 3D EPI readout [TI1/TI2/TE/TRSS-SIVASO = 1100/2600/15/3000ms]. Voxel-size 1.75mm isotropic 

(FOV=196x196x32mm3, matrix=112x112, 18 slices). PF=0.78, fat-suppression-SPAIR. 

The protocol optimization was necessary since the slab positioning can affect the amount of inflow and, therefore, tissue signal. We compared four different 

orientations of the slab together with a change in the direction of the readout gradient. The slice orientation that yielded the highest level of activation represented by 

the highest average Z-score was the one used in the subsequent pRF experiments (Fig1). 

Stimuli 

We used a flickering checkerboard stimulus with 24s on/off blocks, with an extra 12 seconds of fixation at the start for the slice orientation comparison. The pRF 

paradigm consisted of sweeping bar apertures at four orientations (0°, 45°, 90°, and 135°) with two different motion directions for each orientation7.  

In both experiments, motion correction was performed separately for BOLD and VASO, followed by the BOLD contamination correction6. We used z-scores from 

GLM analysis (FEAT in FSL, v.6.0) to assess the optimization slice orientation.  

We estimated the pRF position and sizes using the conventional Gaussian pRF model7 with an additional HRF fit step9 using vistasoft10. The pRF analysis was limited 

to those voxels with a p-value<0.05 in the VASO data. The comparison was performed between each BOLD run separately against the averaged VASO (14 runs) to 

maintain a similar variance explained. A one-way Bayesian ANOVA was used to assess the statistical differences. 

We used Temporal SNR and variance explained as a function of the number of runs to assess the noise level. The tSNR was calculated across cumulatively averaged 

runs for GM and WM. The variance explained was estimated per voxel by computing the variance after fitting the BOLD and VASO-CBV time series separately 

with the model prediction of a given voxel. 

 

Results: Fig.1.B shows VASO-CBV activated voxels within the shared volume of all orientations, overlaid on the anatomical data. Orientation III showed higher 

responses than all other orientations (ANOVA, p-value<0.05). Fig.2 shows the fMRI signal quality captured by the pRF model depicted in R2 maps and time courses. 

The 14-run averaged BOLD shows more high R2 voxels compared to 14-run VASO-CBV and single-run BOLD. 

We found similar eccentricity and polar angle maps for VASO-CBV and BOLD (Fig3), with a tight relationship for the eccentricity. Regarding the noise level, the 

tSNR increases with the number of runs for all regions and participants, although with higher values for BOLD than VASO-CBV (Fig4). The R2 curves also show 

the same pattern, increasing with the number of runs, with higher values for BOLD than VASO-CBV. The pRF size increases with the eccentricity for both VASO-

CBV and BOLD similarly (Fig5). In the Bayesian framework, we define the alternative hypothesis as the difference between VASO-CBV pRF sizes and the individual 

BOLD run pRF sizes. The Bayesian ANOVA indicated weak evidence in V1 (BF10=2.687). And no evidence in V2 (BF10=1.044) and V3 (BF10=0.477). 

 

Discussion & Conclusion: We observed a robust VASO-CBV activation pattern for all orientations and no inflow artifacts in any orientation planes. 

The tSNR curves (Fig4A) reveal that, in general, a single BOLD run is equivalent to 4-5 averages runs of VASO-CBV. Although in different ratios, the R2-curves 

increase with runs, with BOLD reaching a plateau earlier than VASO-CBV. Therefore, we compared the 14-VASO-CBV with individual BOLD runs. 

All pRF properties (Polar angle, eccentricity, and pRF size) measured with VASO-CBV showed similar behavior compared to BOLD. The expected higher 

microvascular specificity of VASO-CBV does not directly result in smaller pRF size estimates. The pRF size depends on a combination of two types of signal 

components; neural and non-neural7. Neural includes the position scatter. Since the comparison was performed in the same cortical location, the position scatter is 

not expected to differ in VASO-CBV compared to BOLD. We also exclude eye and head motion as potential explanations since VASO-CBV and BOLD are nearly 

simultaneously acquired. The high SNR case of 14-run average BOLD shows no difference in observed pRF size. We, therefore, do not think that SNR was a factor 

of influence. Together, these results suggest that the vascular component of the pRF size is not dominant in either VASO-CBV or BOLD. 
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Fig1. The slice orientation was defined as follows: I) Aligned with the ACPC-axis, with the phase 

encoding in the A-P. II) Aligned with the calcarine sulcus with phase encoding in the A-P. III) Aligned 

with the superior surface of the cerebellum, with phase encoding in the R-L. IV) Purely coronal slices, 

with phase encoding in the R-L. B) VASO-CBV activated voxels within the shared volume of all 

orientations, overlaid on the anatomical data. C) Average Z-scores per participant. D) Z-score averaged 

across participants. Slice orientation (III) yielded the strongest signals. 

 

Fig2. Example of time courses and variance explained maps for VASO-CBV and BOLD. V1 is 

outlined on top of a polar angle map. A) Map of the variance explained by the pRF model for 14-run 

average VASO-CBV and two BOLD examples, one averaged over 14 runs and a single run. B) An 

example pRF fMRI responses from a voxel located in V1, for VASO-CBV, averaged over 14 runs and 

two BOLD examples, one averaged over 14 runs and a single run. The dashed lines represent the 

measured response, and the red line represents the model prediction. R denotes variance explained by 

the model for the selected voxel. 

  
 

Fig3. pRF position estimates on an inflated cortical surface. A) The visual area(occipital pole) is 

indicated on the inflated cortical surface. The eccentricity maps are shown for BOLD (B) and VASO-

CBV (C). Polar angle maps are likewise compared between BOLD (D) and VASO-CBV (E). Maps are 
threshold at a variance explained of 5%. F) Correlations between eccentricity values obtained from 

BOLD and VASO-CBV indicate a similar progression of pRF values across eccentricity between the 

two sequences. R-value is the Pearson correlation coefficient.

 

 
Fig4. Noise level assessed by tSNR and variance explained as a function of the number of runs. A) The 

tSNR increases with the number of averaged runs for all participants and both tissue types in similar 

proportions. BOLD tSNR is higher than VASO-CBV for all regions and participants. B) For BOLD, 

variance explained plateaus earlier than the VASO-CBV variance explained, but the levels of variance 

explained by BOLD are consistently higher. 
 

 

   
Fig.5 pRF size changes across eccentricity in V1, V2, and V3 for all participants, for the averaged 

VASO-CBV 14 runs, the averaged BOLD 14 runs, and the individual BOLD runs. pRF sizes increase 

with visual field eccentricity and across the visual area hierarchy. 
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Synopsis: We investigate the feasibility of using CBV-sensitive VASO fMRI at ultra-high field to study the selective columnar organization to axes of motion 

stimuli in human area MT. 

For 5 subjects we found: 

• BOLD and VASO both reveal characteristic tuning curves for axes of motion. 

• VASO results are more specific and less sensitive than BOLD results. 

• VASO layer profiles are less distorted by superficial veins than BOLD. 

• Columnar analysis is feasible using VASO. 

Purpose: Ultra-high field (>=7T) functional magnetic resonance imaging (fMRI) provides a unique opportunity to investigate the columnar and laminar 

organization of the human brain in vivo. The middle temporal area in humans (hMT) shows a selective columnar response to directions or axes of motion as 

revealed by conventional BOLD fMRI contrast with rapid gradient-echo (GE) imaging1,2. Although GE-BOLD has been widely applied in fMRI studies, its spatial 

specificity is reduced by oxygenation changes in draining veins3. Alternatives like SS-SI-VASO sensitive to cerebral blood volume (CBV) offer higher spatial 

specificity to the microvasculature and improved quantifiability, at the cost of reduced signal sensitivity and increased acquisition time with respect to GE-BOLD4,5. 

Here, we investigated, for the first time, the feasibility of mapping axes of motion in hMT and its laminar-columnar functional organization using VASO compared 

to conventional BOLD. 

Methods: Five volunteers were scanned at a ‘classical’ MAGNETOM 7T (Siemens Healthineers) with a 32-channel Rx head coil (Nova) at Scannexus B.V. 

(Maastricht, Netherlands). We collected 3-4 functional runs at 0.8 mm iso-voxel resolution to map four different axes of motion using SS-SI VASO (3D EPI 

readout6, TR/TE/FA=2410ms/25ms/26+°, TI=1530ms, 26 slices, GRAPPA=3 and in-plane partial Fourier 6/8) while presenting 4 repetitions of moving dots (12s, 

each) in 4 different directions (0°-180°, 45°-225°, 90°-270°, 135°-315°), alternated with flickering dots (12s) (Figure 1, A shows the slab coverage). In the same 

session we collected a functional localizer run with GE-BOLD7 at 2mm iso (TR/TE/FA=1000ms/22ms/55°, 57 slices and multi band factor=3) to locate area hMT 

presenting 28 repetitions of outward/inward motion of dots (10s), followed by static dots (10s) and an anatomical MP2RAGE8 (0.7mm iso;TR/TE=6000ms/2.39ms, 

TI=800ms/2750ms, FA=4°/5°, GRAPPA=3). Functional localizer data were processed as follows: slice time correction, motion correction, high-pass filtering, 

geometric EPI distortion correction (BrainVoyager), co-registration to the high-resolution VASO data (Syn, ANTS). A region of interest (ROI) for the left hMT 

was obtained combining significant voxels [p<0.00001] to the “moving vs static dots” contrast of the localizer run (using a General Linear Model) with a sphere 

centred around the activity (radius=16mm). Anatomical data were co-registered to the same space (SyN, ANTS), upsampled to 0.2 mm isovoxel (AFNI) and 

segmented (FSL BET, FSL FAST, ITK-SNAP). On both motion corrected BOLD and VASO time series from SS-SI VASO, we evaluated the tSNR (Figure 1 B) 

and then ran a GLM (BrainVoyager) restricted to the hMT-ROI (Figure 1 C); the initial set of activated voxels obtained from the contrast map “all axes of motion 

vs flickering dots'' was cross-validated using a leave-one-run out approach1,2. Motion direction preference was assigned for each voxel based on the maximum t-

value in the vector of  t-values resulting from contrasting each direction vs flickering dots (‘preference map’). A voxel-wise measure of sensitivity (norm of t-values 

vector) and specificity (averaged angle between winner t-value and the rest) was derived. Equi-volume normalized cortical depths and a flattening algorithm were 

used to investigate the laminar and columnar profile of hMT (LayNii LN2_LAYERS, LN2_MULTILATERATE, LN2_PATCH_FLATTEN)9,10. 

Results: We found axes-of-motion specific tuning curves for all cross-validated voxels in all analyzed subjects for both BOLD and VASO contrast. Figure 2 A 

shows that for both BOLD and VASO a characteristic peak at the preferred axis of motion can be observed in the group result, showing that the averaged voxel 

response exhibits a clear preference towards a single axis of motion. Moreover, VASO shows a higher ratio of t-values between the preferred vs non-preferred axes 

confirming its higher specificity compared to BOLD (on average for VASO=4.1, for BOLD=1.7). Figure 2 B quantifies that BOLD cross-validated voxels are more 

sensitive in terms of the overall response strength, but less specific than VASO, as expected. We plot 2D histograms of cross-validated voxels showing percent 

signal change across cortical depth and layer profiles (Figure 3 and 4): an overall lower mean and variance towards superficial layers is observed for VASO 

compared to BOLD, indicating that the draining vein effects on the pial surface are mitigated. Finally, Figure 5 visualizes preference maps of each subject across 3 

cortical depths allowing the qualitative exploration of the columnar functional organization in hMT. 

Discussion & Conclusion: This study shows for the first time the feasibility of measuring axes of motion and its laminar-columnar organization in extrastriate area 

hMT using SS-SI-VASO. As shown in Figure 2, voxel-specific selectivity for different axes of motion confirms previous results for BOLD and VASO contrasts. 

Despite the reduced signal sensitivity, VASO shows higher spatial specificity in comparison to BOLD contrast. In addition, unlike BOLD, the percent signal 

change for VASO data does not increase towards superficial layers in the layer profiles, indicating that the draining vein effects are mitigated as expected (Figure 3, 

4). Further investigations are needed to quantify the functional columnar organization of hMT and highlight differences between the BOLD and VASO contrasts 

(Figure 5). 
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Figure 1. SS-SI VASO functional images for a selected subject. A) Slab coverage 

relative to a whole brain MP2RAGE. B) Temporal Signal-To-Noise Ratio. C) 

Activation map for BOLD and VASO time series for the contrast: “all axes of motion 

vs flickering dots” (q(False Discovery Rate) < 0.05). 

 

 

 Figure 2. A) Group average axis of motion selectivity tuning curves for each axis of 

motion. Tuning curves are computed by averaging t-values of all cross-validated 
voxels sharing the same preferred axis of motion. The plot depicts the mean and the 

standard error of all voxels per each category. B) Sensitivity and specificity quantify 

cross-validated voxel behavior of all participants for both BOLD and VASO. Red 

circles highlight the main difference between contrast types.   

 

 

 

 

 

  
Figure 4. Layer profiles across three cortical depths: deep (25%), middle (50%), superficial (75%) with respect to 
the white-gray matter boundary. For each cortical depth, the averaged percent signal change of all cross-validated 

voxels is reported for both BOLD and VASO. The yellow box shows the group result of all five subjects. 

 

Figure 5. Preference maps of each subject in a flattened surface for three cortical depths. The first row shows 

hMT, colors reflect the curvature of the region (white: gyri, dark gray: sulci). Second and third rows show the 
preference maps (colors indicate axis-of-motion, see legend at top-left) of all cross-validated voxels in a flat 

representation, respectively for BOLD and VASO (curvature colormap consistent with the first row). 

 

Figure 3. Single-subject 2D 

histogram (of cross-validated 
voxels) showing percent 

signal change across cortical 

depth for BOLD (left) and 
VASO (right). On the x-axes 

0=deep layer, 1=superficial 

layer. Colors indicate the 
number of voxels in each bin 

in log scale. BOLD shows an 

overall higher mean value 
and variability towards 

superficial layers 

(normalized cortical 
depth=1) with respect to 
VASO. 
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Synopsis: Vascular reactivity to a visual stimulus is an early marker in Cerebral Amyloid Angiopathy. Robustness against stimulus delivery setup changes is of importance for comparison between cohorts 

and for longitudinal comparison within groups. For us, this became relevant due to different stimulus setup between our scanners (in-room monitor vs. projector&screen). With both setups, BOLD fMRI 

reactivity scans were acquired during an 8 Hz checkerboard stimulus paradigm. Five healthy participants were included in the study. The commonly used outcome parameters of vascular reactivity, i.e. 

amplitude, time to peak, and time to baseline, appeared to be resilient against changes in stimulus setup. 

INTRODUCTION: Measuring the blood-oxygen-level-dependent (BOLD) response to a stimulus, relates to the level of deoxygenated hemoglobin, blood volume and blood flow1. Through these mechanisms, 
fMRI can be used as a readout measure of vascular reactivity with especially promising findings in Cerebral Amyloid Angiopathy (CAA). CAA is caused by excessive amyloid β deposition in the vasculature 

of the brain. CAA is amongst others associated with intracerebral hemorrhage (ICH), lobar cerebral microbleeds (CMBs), cortical superficial siderosis (cSS), and cognitive impairment2,3. The visual cortex 

of patients with CAA has an early and high cerebrovascular amyloid burden5. This leads to an impaired vascular reactivity, which was demonstrated in sporadic CAA patients as well as in symptomatic and 
presymptomatic gene carriers of Dutch-type CAA (D-CAA), the most common hereditary form of CAA6,7. CAA-patients showed a decreased amplitude, delayed time to peak, and a delayed time to baseline 

of the BOLD response. This way, the affected BOLD response to a visual stimulus forms an important early marker of CAA. The current study aimed to assess the reproducibility of BOLD responses in 

healthy subjects, between two scanners with different stimulus presentation methods. This study was initiated, because our natural history study of symptomatic and presymptomatic D-CAA subjects needed 

to move from one scanner to another, with the two scanners relying on different stimulus delivery hardware. 

METHODS: Five healthy subjects (age varied from 21-56yrs, median of 27yrs; all female subjects) were scanned twice, at two different 3T Philips scanners. The presentation of the visual stimulus in scan 

room A was through a projector that projects onto a screen at the end of the bore. The presentation in scan room B was through an in-room monitor at the end of the bore (Figure 1). At each scan session a 

T1-weighted scan (TE = 5ms; TR = 9.76ms; flip angle 8 degrees; 130 slices; FoV = 217.71x217.71x156 mm; voxel size 1.00x.85x.85 mm) and a gradient echo echo-planar imaging fMRI scan were acquired 
(TE = 38ms; TR = 1500ms; flip angle = 78 degrees; 18 slices on scanner A and 17 slices on scanner B; FoV = 210x210x60 mm on scanner A and 210x210x56.27 mm on scanner B; voxel size = 1.64x1.64x3.31 

mm; 224 dynamics). fMRI scans were acquired during a 20s on and 28s off 8 Hz checkerboard stimulus paradigm. Data processing was done by FSL Feat (fMRI Expert Analysis Tool, Version 6.00)8 and 

included MCFLIRT rigid body transformations9, slice-timing correction using Fourier-space time-series phase-shifting, non-brain removal using BET10, spatial smoothing using a Gaussian kernel of FWHM 

3mm; grand-mean intensity normalization of the entire 4D dataset by a single multiplicative factor, high-pass temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma=24.0s). To 

investigate the possible presence of unexpected artefacts or activation, MELODIC ICA was carried out11 and large components were removed in the presence of unexpected artefacts of activation. A registered 

thresholded V112 ROI from the Julich histological atlas was overlaid onto individual fMRI images and mean activation per timeseries were calculated. A trapezoid fit was applied to the normalized averaged 

BOLD response for a standardized measure of time to peak, time to baseline, and amplitude of the BOLD response6.  

RESULTS: Figure 2 shows the BOLD response curves per subject for both scanners. Figure 3 presents a table with the outcome measures time to peak, time to baseline, and amplitude for all subjects. There 

was no significant difference in the time to peak, time to baseline, or amplitude of the BOLD response between scanner A and scanner B (absolute mean difference = 0.350, 3.106, and 0.003, SD = 0.702, 

2.696, and 0.0024 respectively). The Bland-Altman plots comparing the two methods (Figure 4) show that all observations of the parameters fall within the limits of agreement (the mean +/- 1.96 SD). In 

addition, the observations are randomly scattered above and below the mean difference, without a consistent change in homogeneity. This indicates no consistent bias of one approach to the other.  

DISCUSSION: The most important finding of this study is the resilience of the amplitude, time to peak, and time to baseline to a change in the stimulus delivery setups. This may extrapolate to the possibility 

to compare vascular reactivity measures in (D-)CAA from scanners with different stimulus delivery hardware, and may allow for comparisons between cohorts. Limits of this study are that only five 

participants were included as well as only two different setups. In addition, all participants were healthy controls. A patient with (progressed) CAA may respond differently to different stimulus presentations 

or could be more sensitive to differences in light intensity. In addition, one participant showed significant motion during the fMRI, causing noise in the measured BOLD response.  

CONCLUSION: This data indicates that the vascular reactivity measurements may be insensitive to the method of stimulus presentation. This finding may pave the road for the combined analyses of multiple 

data sets and allow for flexibility in the use of different stimulus delivery setups for studies on disease progression in CAA or ultimately for treatment trials.  
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Figure 1. Setup of the stimulus delivery hardware; a) stimulus view from within the bore for 
method A, b) stimulus delivery hardware with projector and screen in method A, c) stimulus view 

from within the bore for method B, and d) stimulus delivery hardware with in-room monitor in 

method B. 

 

*Figure 2. Normalized mean and 1.96 times the standard deviation of the BOLD response per 

subject (a-e) for both visual stimulus projection methods. Red represents method A. Blue 

represents method B. The grey box indicates the presentation of the stimulus. 

 

Figure 3. Table of the BOLD parameters time to peak, time to baseline, and amplitude for both 

stimulus presentation methods in all subjects.  

 

 

Figure 4. Bland-Altman plots of the BOLD parameters a) time to peak, b) time to baseline and c) amplitude. Method A is the projection of the visual stimulus through a beamer onto a screen. Method B is 

the projection of the visual stimulus through a monitor. Limits of agreement are defined by mean +/- 1.96 standard deviation.  

 

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Time to peak      

Method 1 6.532 6.881 11.247 5.613 9.590 

Method 2 6.882 6.224 9.114 6.748 10.229 

Mean 6.7069 6.5527 10.1808 6.1803 9.9095 

Mean difference -0.3500 0.6567 2.1333 -1.1348 -0.6398 

Time to baseline      

Method 1 8.7111 8.7430 3.9081 6.9955 15.8052 

Method 2 8.1100 7.8690 9.0746 8.8542 9.2275 

Mean 8.4105 8.3060 6.4914 7.9248 12.5164 

Mean difference 0.6012 0.8739 -5.1665 -1.8587 6.5777 

Amplitude      

Method 1 0.02073 0.02300 0.01430 0.0146 0.0282 

Method 2 0.0173 0.0213 0.0140 0.0165 0.0216 

Mean 0.0190 0.0222 0.0141 0.0156 0.0249 

Mean difference 0.0034 0.0017 0.0003  -0.0020 0.0066 
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Synopsis: We performed Monte Carlo Simulations to show that the risk for type I errors decreases if a minimum overlap between the individual results is set in 

addition to the significance of the group results. The activation maps of a real fMRI experiment showed that the combination of a weighted overlap map threshold 

in combination with a voxel significance threshold seems to lead to less type II errors compared to applying a family wise error (FWE) correction. 

 

Introduction: In fMRI, the common practice is to report the significance of the found group results only. However, a significant group effect is not always 

supported by effects observed in the individual subjects1,2,3. Seghier et al. (2016) showed that weighted overlap maps (WOM) can aid the interpretation of group 

effects by looking at the variability of the effects observed at subject’s level. In this study, we illustrate how WOM help reducing the chance for false positive 

results using Monte Carlo simulations (MCS) and real fMRI data. 

 

Methodology: 

Monte Carlo Simulations: The MCS were done in RepSim4. We performed 1000 MCS simulating the statistical activation maps per subject for 5 fMRI 

experiments (sample sizes 15, 20, 28, 50 and 100 subjects). In each simulation, a WOM was calculated based on the statistical significance p: 

𝑊𝑂𝑀 =
1

𝑁
∑ 𝑤𝑖  𝑤𝑖𝑡ℎ 𝑤𝑖 = {

1 𝑖𝑓 𝑝𝑖 < 0.001

𝑒−
1

2
(

𝑝𝑖−0.001

0.001
)

2

 𝑖𝑓 𝑝𝑖 ≥ 0.001

𝑁
𝑖=1   

(N: number of subjects) 

Per MCS, a group analysis was performed and the resulting statistical map was thresholded at p<0.001.  

Per fMRI experiment, we calculated the chance per voxel for overlapping false positive activations in n subjects (n[0…N]) and the chance for an additional false 

positive group effect. 

 

fMRI Experiment: To illustrate the effect of applying a WOM based mask on fMRI results, we used data of 28 subjects (24 females, age 25 3) participating in an 

episodic future thinking (EFT) fMRI experiment. In this experiment, the participants were asked to imagine an event that could happen in their own future 

associated with the words presented on a screen (e.g. word: car, event: driving to a friend next weekend). The multi-echo fMRI scan was done on a GE MR750W 

scanner (18 trials lasting 20s with 4s rest, 210 dynamics, TR=2s, TE=17/39.2/61.4ms). 

After processing the individual fMRI scans in SPM125, a 1-sample T-test on the activation maps was performed and a WOM was calculated. The group activation 

map for EFT was thresholded at p(uncorrected)<0.001, p(FWE)<0.05 and p(uncorrected)<0.001 combined with WOM>0.15 (at least 5 subjects). 

 

Results: 

Monte Carlo Simulations: The MCS showed that for all sample sizes, in each voxel the chance of having a false positive result at group level not supported at 

subject’s level was 0.001. The chance of having a false positive activation in only 1 subject was 0.030 for N=15, 0.040 for N=20, 0.056 for N=28, 0.095 for N=50 

and 0.173 for N=100. The chance that a false positive result in only 1 subject is also significant at group level was 0.000 for N=15 and N=20, 1.02E-7 for N=28, 

3.99E-6 for N=50 and 3.33E-5 for N=100. The largest overlap seen between false positive subject’s results was 5 for N=15, 6 for N=20, 5 for N=28, 6 for N=50 

and 7 for N=100. The largest overlap seen between individual results that also showed a significant group results was 1 for N=15 and N=20, 2 for N=28 and 3 for 

N=50 and N=100. The results of the MCS are summarized in table 1. 

 

fMRI Experiment: The maximum WOM of the individual activation maps for EFT was 0.73. Figure 1 shows the overlap between the activation map thresholded at 

p(uncorrected)<0.001, p(FWE)<0.05 and p(uncorrected)<0.001 combined with WOM>0.15. 

 

Discussion: Our Monte Carlo simulations showed that the risk for false positive results repeatedly observed in multiple subjects increased with sample size. 

However, the chance of having a significant false positive group result supported by false positive results in multiple subjects, decreased with the overlap between 

the individual results. This observation supports the call of Chen et al. (2017) and Seghier et al. (2016) that it is interesting to give more attention at the individual 

effects underlying observed group effects. 

The activation maps of a real fMRI experiment showed that our proposed group significance combined with a minimum WOM threshold resulted in more and 

larger activation areas compared to the family wise error (FWE) correction, while large parts of the activations found with p(uncorrected)<0.001 were filtered out as 

possibly false positives. Since the FWE correction is known to inflate the risk for type II errors6, our results suggest that our combined threshold method makes a 

better balance between type I and type II errors. However, task related activations occurring in a few subjects only, will be misted due to the WOM threshold. 

 

Conclusion: As illustrated in this study, using a WOM based on the individual activation maps in combination with the significance of group results can help 

reducing the risk for false positive results in a fMRI study. 
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Table 1. Summary of the MCS presenting the chance per voxel to show a false positive result overlapping in n subjects and additionally showing a false positive group effect. N is the sample size of the 

simulated fMRI experiments. To compare the results, the WOM values were transformed in number of subjects as n=WOM*N. 

 

 

Figure 1. The overlap between the EFT activation maps thresholded at p(uncorrected)<0.001, p(FWE)<0.05 and p(uncorrected)<0.001 combined with WOM>0.15. 
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Synopsis 

Adding to the literature of resting state fMRI (rsfMRI) in preoperative planning, we investigated the similarity of a task based fMRI (tbfMRI) language protocol to a pan-language functional connectivity 
map in 10 healthy subjects. When comparing the whole brain there is relatively low Jaccard and Sorensen-Dice similarity between rsfMRI and tbfMRI language activity, however when looking at separate 

cortical anatomical regions the language areas are among those having the highest similarity. Additionally, there is a significantly higher similarity in the left IFG pars triangularis. This suggests that 

rsfMRI could be used reliably to determine Broca’s area in preoperative planning. 

Purpose  

Determining the location of Broca’s area, Wernicke's area and general language laterality is imperative in pre-operative planning. Task based fMRI (tbfMRI) is currently used to help determine this, but 
what if your patients cannot complete such tasks? Recent works have described resting state fMRI (rsfMRI) as a possible alternative1–4. However, the data is limited, mostly including clinical patients and 

the conclusions are variable5. Further building on this work, we investigate the similarity in language area activity in tbfMRI and rsfMRI in 10 healthy subjects. 

Methods 

The data used was available from the S1200 release of the WU-Minn Human Connectome Project consortium (HCP)6. Anatomical data, resting state, and task-based language conditions for 10 subjects 

were chosen for analysis. 

The resting state data was acquired with a TR of 720 ms. The language task was organized as described by Binder et al.7 For each subject one run per tbfMRI and rsfMRI condition was used. 

Data analysis (summarised in Fig. 1) consisted of preprocessing steps, first level analysis and comparative analysis. Software packages used to achieve this were CONN-toolbox8, Statistical Parametric 

Mapping (SPM) and custom scripting in MATLAB (MathWorks). Preprocessing was done using CONN’s ‘default-MNI’ preprocessing pipeline. A spatial smoothing kernel with FWHM of 6 was used.  

The same preprocessing was applied to rsfMRI and tbfMRI data with the sole difference being the bandpass filter used in the denoising step. The results are mapped to MNI space. 

For rsfMRI data, after denoising, seed based connectivity (SBC) was calculated using the default conn network parcellation atlas. The left and right Inferior Frontal Gyrus (IFG) and posterior superior 

temporal gyrus (pSTG) language networks were chosen as seeds. The p-maps were thresholded at p<0.05. A combined pan-language functional connectivity (FC) map was created by selecting only those 

voxels present in all 4 SBC p-maps.  

For first level analysis of tbfMRI data, a Math < Story contrast (vector: [-1,1] for [math, story] conditions) was created. The corresponding t-map was converted to p-maps and thresholded at p<0.05. 

The above was repeated for each subject and comparisons were made between subject specific tbfMRI first level results and the pan-language FC maps. Jaccard index and Sorensen-Dice index were used 

as similarity metrics. The comparison was made for the whole brain volume and for separate cortical ROIs. These regions were determined by parcellating the MNI space with the Harvard-Oxford atlas9-12. 

Results 

First level results of tbfMRI show activation in Broca’s area (IFG) and Wernicke’s area (pSTG) as expected (Fig. 2A). The resting state first level seed-based correlation results also show expected 

activation patterns for each of the four language networks results. The pan-language FC map shows a slightly asymmetric activity pattern in the language areas. (Fig. 2B). 

When comparing the whole brain volumes of tbfMRI and the pan-language FC maps the Jaccard index values are 0.0653 ± 0.0191 and Sorensen Dice indices are 0.1220 ± 0.0339 (Fig. 3).  

Looking at separate brain regions, there are 28 regions with higher Sorensen Dice indices and 30 regions with higher Jaccard indices than the whole brain values. For Both Jaccard and Dice values the 

language areas are among the highest scoring areas (Fig. 4). A significantly higher value for Dice and Jaccard can be found in the left IFG pars triangularis (p<0.001, Wilcoxon rank sum test).   

Discussion 

The tbfMRI first level activity map and pan-language FC map seem quite widespread. FDR correction of the p-maps could solve this, however more subjects would be needed to increase the power of the 

analysis.  

The dice and Jaccard scores when comparing the whole brain are relatively low. This might indicate that the four chosen language networks are not sufficient as correlates for task-based language area 

determinants. The choice of analysis using the pan-language FC map might also not be optimal. In addition, the Story > Math contrast as described by Binder et al.7 might not be as good an indicator of 

language laterality as other protocols that are used in the clinic such as verb-to-noun generation, sentence completion or object naming.  

However, when separating out the cortical anatomical regions, the language areas are among the highest scoring areas, albeit with relatively low scores. A marked exception to this is the left sided  IFG pars 

triangularis, which scores significantly higher than the rest. This could indicate that the localization of Brocca’s area using rsfMRI in healthy subjects might be valid. However, a limitation of this finding is 

that there was no information available at the time about the handedness of the subjects. 

Conclusion 

When comparing language in tbfMRI and rsfMRI in healthy subjects there is a low similarity when looking at the whole brain. However when looking at separate cortical areas the language areas score the 

highest in similarity. Moreover there is a significantly higher similarity index for the left IFG pars triangularis compared to other areas.  

This work further opens the door towards determining language localisation using rsfMRI in preoperative planning. Future work includes a bigger sample size, the addition of motor networks and 

development of predictive models.  
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(Top Left – flowchart) Figure 1. Flow chart of the preprocessing and analysis steps. The blue path corresponds to the rsfMRI data and the red path to the tbfMRI data.  

(Top Right – the brain mosaic) Figure 2. Average activity (n=10). Red: first level tbfMRI for a Story > Math language task (contrast:[1, -1]) thresholded at p<0.05. Blue: pan-language activity for rsfMRI 

map for L and R, IFG and pSTG language networks thresholded at p<0.05. Corresponding axial z values are shown in the top left corners.  

(Bottom Left – the 2 violin plots) Figure 3. Jaccard and Sorensen-Dice index for tbfMRI and pan-language rsfMRI maps when comparing the whole brain volume.  

(Bottom Right – the many boxplots) Figure 4. Jaccard and Sorensen-Dice indices for tbfMRI and pan-language FC maps for n=10 subjects when comparing separate cortical regions. Regions are sorted 

from high to low going from left to right (n=28 for Sorensen-Dice index, n=30 for Jaccard index). Significance is noted by an asterix.  
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Synopsis: This study uses an MRVF approach to analyze the time evolution of a DSC hybrid -EPI (HEPI) sequence that simultaneously acquires 

gradient and spin echo images. HEPI properties are incorporated from the scanner into simulations including contrast agent extravasation, diffusion, 

and MR signal evolution and for varying the outcome parameters: CBV, mean vessel-size, and leakage. In vivo data of six glioma patients are used 

to compare MRVF output maps to those obtained from conventional VSI modelling. The results show reasonable agreement. Also, the noise 

sensitivity of both techniques was investigated. 

 

Introduction: Perfusion parameters derived from Dynamic Susceptibility Contrast (DSC) MRI are increasingly utilized as image-based biomarkers 

for management of patients with glioma1. Of particular interest is relative cerebral blood volume (rCBV), which is the most widely used parameter 

for predicting tumor grade and has the potential to predict overall survival of glioma patients2. Hybrid EPI (HEPI)3 is a fast acquisition technique that 

combines gradient (GRE) and spin echo (SE) read-outs which are sensitive to all vessels (micro and macro) and only microvasculature, respectively. 

Using HEPI for DSC imaging can therefore provide additional information of blood vessel architecture, including estimates of vessel radius (R)4. To 

disentangle R and rCBV, a vascular fingerprinting5 (MRVF) approach based on DSC HEPI acquisition is proposed in this work. Quantitative 

information retrieved about the underlying microvasculature of glioma using a HEPI dictionary specific for the DSC technique is compared with 

those obtained using conventional Vessel Size Imaging (VSI) processing6. To test the hypothesis that MRVF is more robust to noise than VSI, R and 

rCBV are estimated after adding noise to the raw in-vivo data.  

 

Methods: HEPI-DSC images were acquired at 3T (MR750, GE) from 6 patients with confirmed diagnosis of glioma (Table 1). Dynamic images 

(TR/TEGRE/TESE 1.5s/20ms/70ms, 15 slices) were acquired during bolus injection of 7.5ml of GBCA (Gadovist, Bayer, GE) after a preload of equal 

size7,8. We imported the HEPI sequence as played out on the scanner into a simulation (DCESim) tool9 that simulates CA extravasation, diffusion, 

and MR signal. A dictionary was created by simulating a 2D voxel with 5 vessels having 10, 50 and 40 logarithmically spaced values of permeability 

(k) [0, 7*10-3] s-1, R [5, 150] µm and rCBV [0.5, 10]% respectively9,10.  For each dictionary atom the simulation included a time range of 400s to 

cover pre-bolus and delay, followed by 100s of the main bolus and HEPI-acquisition. The dictionary was matched to the patient data using a separate 

scaling factor for the GRE and SE parts to compensate for baseline signal differences between dictionary and in-vivo signals. The vessel parameters 

corresponding to the match from the dictionary to the data are retrieved. Conventional VSI modelling to obtain rCBV and R maps was done after 

conversion of GRE & SE time courses into changes in transverse relaxation rates over time6. Here, leakage correction was included as previously 

described11. Structural Similarity Index Measure (SSIM) was used to assess the similarity between the corresponding parameter maps obtained using 

MRVF and VSI. To perform noise analysis, independent Gaussian random noise was added to three of the patient datasets and the absolute 

percentage difference was calculated as error-measure.  

 

Results: The vessel parameters of the dictionary match to the in-vivo data are shown in Table 1 for a representative voxel within the tumor region 

for each of the datasets. Non-zero permeability values were obtained only for the enhancing tumor voxels as seen on T1-Gd. Figure 1 shows for each 

patient a representative T2 FLAIR image with the R and rCBV parametric maps obtained using the two methods. It is observed that both techniques 

show similar patterns, although the tumor rCBV in patient 3 is more hyperintense for MRVF than for VSI. R estimates are comparatively noisy in 

MRVF maps due to very small differences in the HEPI signals simulated for varying R above 70µm. The SSIM values are shown in Table 1, 

illustrating that both the techniques are similar as concluded from the moderate to high SSIM-values. Figure 2 shows GRE (A,B,C) and SE (D,E,F) 

signals for a representative tumor voxel in three of the datasets, before and after adding noise, and their corresponding dictionary match. R and rCBV 

maps were also estimated using both the techniques from the noisy data. They were compared with the corresponding maps from the raw data by 

evaluating the percentage difference values between them which are shown in Figure 3. Low percentage error values were obtained for the rCBV 

maps in both the techniques, while the difference values for R were comparatively higher for VSI compared to MRVF.  

 

Discussion: The proposed DSC-HEPI based fingerprinting approach retrieves quantitative information on microvasculature of gliomas with the 

advantage of acquiring a single time course during passage of a bolus of contrast agent compared to the conventional MRVF based on pre- and post-

contrast asymmetric spin-echo data5. Time-course data show good correspondence between dictionary and in-vivo data. We compared the 

quantitative maps of R and rCBV from MRVF to VSI values and found similar patterns, although some differences should be noted. In the 

experiments MRVF and VSI appeared to be robust against noise in estimating rCBV, while the apparent improved robustness of MRVF in 

estimating R needs to be further studied.  
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Table 1: Diagnosis of the patient datasets and the vessel parameters, k, R and 

rCBV values obtained from the best match of the HEPI signals in a tumor voxel. 

The last two columns show the SSIM obtained between MRVF and VSI for R 

and rCBV maps for each of the dataset. 

 

Figure 1: T2 FLAIR images of 6 patient datasets of slices showing the glioma 

(marked by the red arrows) and the corresponding vessel radius and rCBV maps 

obtained using the MRVF and the VSI methods. 

 

Figure 2: Raw GRE and SE signals (blue) in a voxel in one of the voxels, compared with the 

corresponding signals after adding noise (green), of patient datasets, 1 (A, D), 3 (B,E) and 4 

(C,F). For each GRE and SE raw and noisy data, corresponding match obtained from the 

respective GRE and SE of the dictionary atoms is also shown. 

 

Figure 3: Error (%) maps in R (a,b,e,f,i,j) and rCBV (c,d,g,h,k,l) estimation 

from raw and noisy data using MRVF (a,c,e,g,i,k) and VSI (b,d,f,h,j,l) for 

patients 1(a-d), 3(e-h) and 4(i-l). 
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Synopsis: This work provides a framework to measure CSF net flow in vivo in humans whilst accounting for the pulsatile motion due to cardiac effects. CSF motion contributes to the 

clearance of waste products in the brain and has been proven to be impaired in Alzheimer patients. A slice-selective single shot Displacement encoding with stimulated echoes sequence 

was used to measure these CSF motions. Preliminary results show that more work is needed in order to accurately estimate the CSF net flow. 

 

Purpose 

Motion of cerebrospinal fluid (CSF) contributes to removal of waste products and has been proven to be impaired in Alzheimer patients 1,2. CSF motion, which is in the order of μm/s 

to mm/s, can be measured using stimulated echo sequences3. However, it remains challenging to measure this motion in vivo due to other effects such as the cardiac and respiratory 

cycle. These effects also induce CSF motions, while CSF production and absorption induce a net flow that is very small compared to the higher-frequency motions4. Our end-goal is 

to measure this net flow of CSF while correcting for confounding effects from higher-frequency components in the CSF motion. Here we describe the approach and provide 

preliminary results targeting net CSF-flow at end-exhalation breath holds as proof-of-concept. 

 

 

Methods 

We propose to use a slice-selective single shot Displacement encoding with stimulated echoes (DENSE) sequence5 without cardiac triggering and long mixing time (TM, delay between 

encoding and decoding) to maximize sensitivity to slow flow (see Figure 1). The measured phase, 𝜑, can be modeled as a linear combination of cardiac effects, 𝜑𝑐, CSF net velocity 

effect, �̇�𝑛𝑒𝑡, and static confounders, 𝜑0, yielding the model: 

𝜑(𝑟) = 𝜑0 +  ∑ 𝑥𝑐,𝑖𝜑𝑐,𝑖

10

𝑖=1

+ �̇�𝑛𝑒𝑡𝑇𝑀 

where 𝑖 is the number of the cardiac bin. The 𝑥𝑐,𝑖 and 𝑇𝑀 are known based on physiology trace and scan parameters respectively. The 𝜑0, 𝜑𝑐,𝑖 and �̇�𝑛𝑒𝑡 are estimated using a least 

squares optimization. The cardiac induced displacement is calculated from the average cardiac phase of the ROI by: 

𝑑𝑐,𝑖 =
𝐷𝐸𝑁𝐶

𝜋
 𝜑𝑐,𝑖 

And the net velocity is calculated from the average net phase of the ROI by: 

𝑣𝑛𝑒𝑡 =
𝐷𝐸𝑁𝐶

𝜋
 �̇�𝑛𝑒𝑡 

 

 

Where DENC is the motion encoding sensitivity in mm.  

 

We obtained preliminary results of this approach from one healthy volunteer (male, 26 years) scanned at a 7T (Philips Healthcare) using a 8-channel transmit and 32-channel receive 

coil (Nova Medical). Written informed consent was obtained in accordance with the Ethical Review Board of our institution. Acquisition was performed during breath hold after 

exhalation to obtain a stable respiratory effect which will be part of �̇�𝑛𝑒𝑡. A total of 50 slices in coronal orientation were acquired in two cycles (odd and even), which were obtained 

during the same breath hold. DENSE measurements were repeated 51 times with the following parameters: motion encoding sensitivity 0.3 mm in FH direction, mixing time 1250/1350 

ms, cycle duration: 2500/2700 ms, SENSE = 2.3, resolution of 3x3x3 m3, TR/TE = 5000/(5400)/24 ms. Physiological data was simultaneously recorded using a respiration belt to trace 

abdominal breathing and a peripheral pulse transducer (PPU) to trace the cardiac cycle. For reference of the CSF, a T2-weighted scan was acquired using 2 refocusing pulses and an 

echo time of 250 ms. 2D phase unwrapping was performed per slice for all dynamics. 

During post-processing all acquisitions were retrospectively binned into ten cardiac phases using the PPU data. The T2-weighted scan was used to create a mask for the different ROI’s 

that were investigated. Within these ROI’s (see Figure 2) mean phase values were calculated which were used as input for the least squares optimization.  

 

Results and Discussion 

Figure 3 shows the displacement over the cardiac cycle for the fourth ventricle and a mixing time of 1250 ms. Table 1 shows net velocities of the CSF for the different ROIs and the 

two mixing times. All velocities are small at most 33 μm/s. Most velocities are negative indicating flows towards the spinal canal, which is to be expected during exhalation. 

However, the velocity at the fourth ventricle did not have consistent sign between the two mixing times and is lower than expected (similar numbers as found in the brain stem tissue). 

 

Future work is needed to further develop and validate the proposed approach. The model needs to be extended to include respiration- and vasomotion-induced CSF motion. The effect 

of eddy currents needs to be considered as well. We intend to validate the approach with simulations for which the ground truth is known, and by setting up a dedicated phantom with 

creep flow. A challenge for the measurements is to balance the motion sensitivity for the slow net velocities and the sensitivity to phase wraps due to the high velocities from heartbeat-

related CSF motion. A multi-DENC approach might solve this issue. It is promising that with the current DENC (0.3 mm) very low net velocities seem to be detectable, as seen in the 

brain stem tissue. The apparently wrong estimates for the net CSF velocity in the fourth ventricle might be due to phase wraps in the data, although phase-unwrapping was applied to 

avoid such errors.  

 

Conclusion 

A framework was set up to measure CSF net flow in vivo whilst accounting for pulsatile confounding motions. Preliminary results show that more work is needed.  
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Figure 1. Overview of slice-selective DENSE sequence. A) DENSE 

employs an encoding and decoding gradient, which is alternated over the 
multiple dynamics. A phase shift during the mixing time corresponds to 

tissue displacement along the direction of the motion encoding gradients. 

B) Schematic overview of the sequence that was acquired. A total of 50 

slices was acquired in two cycles (odd and even) during a breath hold after 

exhalation. 

 

 

Figure 2. T2-weighted EPI, DENSE magnitude image and DENSE phase image. The ROI is drawn in the fourth ventricle, for which the cardiac cycle is also shown in Figure 3 

 

 

Figure 3. The displacement (𝜇m) measured for every cardiac bin in the fourth ventricle 

for a mixing time of 1250 ms. 

Table 1. Velocity (μm/s) of net CSF flow for the five different ROIs and the two mixing times. 

 TM = 1250 ms TM = 1350 ms 

Left Ventricle 22.8 8.4 

Right Ventricle -3.9 -25.6 

Fourth Ventricle 10.9 -25.5 

Superior CSF ROI -12.0 -33.2 

Brain Stem Tissue  -14.0 -8.2 
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Synopsis: BOLD fMRI is widely applied in human neuroscience, but is limited in its spatial specificity compared to cerebral blood volume approaches due to its 

venous bias. Here we added cerebral blood-volume weighting based on magnetization transfer (Arterial Blood Contrast) to a BOLD submillimeter acquisition at 7T. 

Adding Arterial Blood Contrast helped differentiate the deep and superficial cortical responses in the human primary motor cortex. The results suggest that combining 

Arterial Blood Contrast with BOLD can improve the fMRI spatial specificity while retaining high sensitivity. 

Summary of main findings: Suppressing grey matter using magnetization transfer (Arterial Blood Contrast) in a BOLD acquisition better differentiated the deep 

and superficial cortical fMRI signal. Adding Arterial Blood Contrast may increase specificity compared to BOLD alone. 

Introduction: fMRI allows imaging the neural underpinnings of behavior in-vivo and has seen therefore widespread application[1]. fMRI contrast is typically 

produced using blood deoxyhemoglobin as an endogenous contrast agent (BOLD), which biases spatial sensitivity towards vein-rich areas, like the superficial layer 

of the cortex[2]. Cerebral blood volume (CBV) approaches are more spatially specific, showing increased intracortical functional contrast[3], but are less sensitive. 

Arterial Blood Contrast (ABC) is a newly-introduced technique[4] that produces a CBV-weighted functional signal by preferentially suppressing the tissue through 

the saturation of the macromolecular pool and the transfer of spin coherence to the free water pool[5]. The spatial-specificity benefits of ABC are currently unexplored. 

In this study, we employ a task paradigm thought to elicit intracortical functional contrast[6] to examine the specificity of a submillimeter BOLD technique with 

added ABC-weighting. 

Methods: All six participants (4 female) were scanned in a Philips Achieva 7T with a 8Tx/32Rx whole-head coil (Nova Medical). The participants performed two 

counterbalanced runs of a finger-flexing task (right index finger, ON=13.5s, OFF=13.5s, run-duration=6min:40s), while a segmented submillimeter 3D-EPI was 

recorded (FOV=120x131x31mm3, voxel-size=0.9mm isotropic, TA/TR/TE=2700ms/52ms/18ms, flip-angle=20o, SENSEy/z=3.5/1.5, partial-Fouriery/z=0.7, shot-

duration=218ms) (Figure 1A,B). Between each segment either a saturation train (7 hard rectangular on-resonance phase-modulated pulses, B1=10μT, duration=1ms, 

95% SAR limit[4],[7]) or an equivalent wait was inserted, to achieve ABC- or BOLD-weighting. The ratio between ABC and BOLD showed 64% remaining signal 

in white-matter (WM), 72% in grey-matter (GM), and no signal loss in cerebrospinal fluid (CSF), implying minimal direct saturation. A distortion-matched, T1-

weighted 3D-EPI was obtained by replacing the saturation train with an adiabatic inversion pulse (TI=1100ms). The 3D-EPIs were placed approximately perpendicular 

to the left primary motor cortex to optimally visualize the handknob (Figure 1B), including the lateral side (M1-BA4a) that has been reported to show a double-stripe 

CBV fMRI response to finger flexing (Figure 1C,D)[6]. The fMRI data were motion-corrected and projected to the T1-weighted-EPI with a single interpolation. A 

GLM (finger-tapping>rest) was fitted (FSL6.0.1) and the percent signal change was calculated. Cortical depth profiles of the GM from WM to pial surface were 

extracted from a manually drawn ROI in M1-BA4a (LAYNII[8]). For two participants, a second session was recorded on a different day to examine the reproducibility 

of the results. 

Results: Cortical depth sampling of the M1-BA4a during finger flexing showed an increased percent signal change close to WM for ABC compared to BOLD, 

resulting in a consistent between participants activation bump in deep GM (peak percent signal change ranging from 0.75 to 1.3% between participants in deep GM). 

This stripe pattern was visually obvious in the unsmoothed data in 4 out of 6 participants (Figure 2A-C). In the superficial GM, a second peak was not readily visible, 

though in 2 participants a second peak was observed in both BOLD and ABC. The ABC response, including the stripe pattern, was reproducible in different days 

(Figure 3A). The mean cortical depth response across participants showed an increased percent signal change close to WM for ABC compared to BOLD (Figure 4D). 

ABC and BOLD average timecourses were similar, with a potentially slightly earlier peak in the outer and middle GM for ABC compared to BOLD within M1-BA4a 

(Figure 4A-C). The mean number of active voxels (p<0.05) across the whole slab was similar between BOLD and ABC, implying similar sensitivity, with a slight 

increase in deep GM (Figure 4E). 

Discussion: Increasing the fMRI spatial specificity within the human cerebral cortex is an important target for human neuroscience. Here, we showed that adding 

ABC-weighting elicited a differential deep and superficial cortical response that was not detected with standard BOLD weighting in most participants. The ABC 

approach offers high sensitivity, straightforward implementation and high temporal efficiency, despite the SAR-constrained 7T environment. High-resolution ABC 

may therefore have widespread application in in-vivo neuroscience. The ABC-weighting as implemented here is added to the underlying BOLD contrast. Preferentially 

saturating the GM tissue may increase spatial specificity and sensitivity due to an increased arteriole and capillary contribution through the suppression of the 

(negative) tissue signal change, as well as due to increased water signal (arterioles upstream to the point of activation). This is supported by the potential slightly 

earlier peak of the ABC response in the superficial and middle GM, in agreement with added arterial weighting, though experiments with longer interstimulus intervals 

would be needed to test this. The perfusion of saturated water from the tissue to the capillaries and further downstream may further decrease the venous contribution. 

Despite the increased specificity, a substantial venous bias remains in the current implementation, as evidenced by the close agreement between BOLD and ABC 

close to the pial surface. Exploring the TE space to reduce the venous contribution (either through fully center-out readouts or at TEs where the short T2* venous 

signal has decayed) may further increase specificity in the future. 

Conclusion: BOLD fMRI is widely applied in human neuroscience, but is limited in its spatial specificity. Here, we showed that adding ABC-weighting to a 

submillimeter BOLD-weighted 7T acquisition increases intracortical contrast, while retaining high sensitivity. 
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Figure 1. A, Overview of ABC, BOLD and T1w anatomical-reference using the same segmented 3D-EPI. B, BOLD, ABC and MTR=ABC/BOLD at the handknob (primary motor cortex). C, Two runs of a 
finger-flexing task were recorded, where participants were instructed to flex their right index finger without touching their palm or rest while fixating on a cross. D, Finger-flexing elicits a double-stripe 

intracortical fMRI response in M1-BA4a with CBV methods[6], thought to relate to input and output cortical responses. 

 

Figure 2: fMRI signal change in the left handknob during right index finger flexing. Each column represents a participant. Top row, ABC signal change. Middle row, BOLD. The white box highlights the 
M1-BA4a, where a double-striped activation pattern is expected[7]. The black lines represent the WM, middle GM and pial surface. Bottom row, mean cortical depth sampling within the M1-BA4a 

(red=ABC, blue=BOLD). The cortical depth profiles show increased signal change close to WM for ABC. 

 

 

Figure 3. Reproducibility of the fMRI percent-signal-change in the left handknob during right index finger flexing. A, B: Participant 1 and 2. Top row, ABC, bottom row, BOLD. The white box highlights 

M1-BA4a, where a double-striped activation pattern is expected[7]. The black lines represent the WM, mid-GM and pial surface. Note that for participant 1 the deep GM activation stripe in ABC is 

consistent across days. 

 

Figure 4: A-C, Mean timecourse within-

group for superficial (A), middle (B) and 
deep GM (C) (red=ABC, blue=BOLD). 

D, Mean cortical depth sampling within 

the M1-BA4a within group. Note that an 
activation increase is observed close to 

WM for ABC, while closer to the 

surface, the ABC response is more 
similar to BOLD. E, Mean number of 

active voxels within-group (p<0.05) for 

superficial, middle and deep GM. ABC 

shows similar sensitivity to BOLD. 
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Synopsis: Many patients with Duchenne muscular dystrophy (DMD) experience cognitive and behavioral symptoms. Altered white matter microstructure has been 

shown with diffusion tensor imaging (DTI) in this population. In the present study, brain involvement in DMD was investigated with diffusion-weighted spectroscopy 

(DWS) and DTI to gain insight into the tissue compartments involved. Results indicated preserved diffusion of N-acetyl aspartate (NAA), choline, and creatine and 

similar NAA/creatine and choline/creatine ratios in patient with DMD compared to healthy controls. This suggests that the altered diffusivity of water may be due to 

extracellular, rather than intracellular processes. 

Introduction: DMD is a progressive X-linked recessive neuromuscular disorder caused by the absence of functional dystrophin protein1,2. Dystrophin is expressed 

in both muscles and brain3. Approximately 30% of patients with DMD experience behavioral and cognitive deficits4, which have a large impact on quality of life. 

Reduced fractional anisotropy (FA) and increased mean diffusivity (MD), detected with DTI, were reported in the brains of patients with DMD compared to healthy 

controls (HC)5,6,7. However, the water molecules that are detected with DTI are non-specific, as they are present in almost all microscopic tissue subcomponents and 

diffuse quickly between intra- and extracellular environments8. DWS allows for compartment-specific assessment of the diffusion properties of neuronal and glial 

markers, such as N-acetyl aspartate (NAA), creatine (Cr), and choline (Cho). Here, we aimed to assess the properties of these markers to gain a better understanding 

of cell-type specific contributions to the diffusion signal.  

Materials and methods: DWS scans were obtained in N=21 genetically confirmed patients with DMD and N=11 age- and sex-matched HC in a two-center study 

(Leiden University Medical Center, the Netherlands; Newcastle University, the United Kingdom). Scans were obtained at 3 Tesla (Philips Achieva, Best, the 

Netherlands) using an 8-channel head coil. 3D T1-weighted scans (TE/TR 4.6/9.8 ms; spatial resolution 1.17x0.92x1.17 mm; 4:55 min) were obtained for anatomical 

reference. DWS data were acquired with and without water suppression using a cardiac-triggered DW-PRESS sequence (TE=125 ms, TR=2 cardiac cycles; volume-

of-interest (VOI)=30x20x15 mm; 24 signal averages; 3:20 min; b=0 and b=3765 mm/s2; three diffusion directions; non-water suppressed two signal averages, 24s) 

to determine diffusion and metabolite levels. The VOI was positioned in the white matter (see Figure 1). DTI scans (TE/TR 59/9440 ms; spatial resolution 1.96x2x2 

mm; 32 directions, b=0 and b=1000 s/mm2; 6:40 min) were obtained  to determine water diffusion metrics.  

DWS spectra were analyzed using an in-house Matlab routine, including corrections for individual frequency and phase drifts and eddy currents, and subsequently 

fitted using LCModel9. For total NAA (tNAA=NAA + N-acetyl-aspartyl-glutamate (NAAG)), choline compounds (tCho=Cho + phosphocholine (PCho) + 

glycerophosphocholine (GPC)), and total creatine (tCr=Cr + phosphocreatine (PCr)) the apparent diffusion coefficients (ADC) were calculated. Volume fractions of 

cerebrospinal fluid, white matter, and grey matter within the VOI were determined using an overlay of the VOI with the tissue maps derived from FSL10. Mean white 

matter fraction, mutation status, study center, and age were correlated with the ADCs of the metabolites to inspect the need to include them as covariates. Metabolite 

ADCs were then compared between groups using a multivariate general linear model in SPSS. The ratios of tNAA/tCr and tCho/tCr were calculated from the fitted 

non-diffusion weighted spectrum. Differences between groups were inspected using a Student’s t-test. DTI preprocessing steps included signal drift, Gibbs ringing, 

subject motion, eddy current, and echo planar imaging corrections, carried out using ExploreDTI11. DTI scans were co-registered with T1 and DWS to obtain the FA 

and MD of water within the VOI (results pending). 

Results: DWS data from n=20 patients with DMD and n=10 HC passed quality control (signal-to-noise ratio >6; full-width half-maximum of NAA <.030 ppm; 

Cramer-Rao Lower Bounds <6% for NAA, <10% for choline and creatine). See Table 1 for participant characteristics. Corresponding DTI scans were available of 

all participants, but n=2 contained artifacts leading to exclusion. This resulted in n=18 patients with DMD and n=10 HC. Mean white matter fraction (80%±8.9%), 

mutation status, study center, and age did not significantly correlate with the ADCs of the metabolites (p>.05), and were therefore not included as covariates. No 

significant differences in mean ADCs were found between patients with DMD and HC (p>.05; see Table 2). No significant differences were found between groups 

for tNAA/tCr and tCho/tCr ratios (p>.05; see Table 3). Water FA and MD within the VOI results are pending.  

Discussion and conclusion: Results from this study indicate preserved diffusion of tNAA, tCho, and tCr with ADC values similar to the literature12. The ratios of 

tNAA/tCr and tCho/tCr in patients with DMD compared to HC are consistent with our previous results, indicating intact biochemical composition in patients with 

DMD13. If the reduced FA and increased MD is replicated within the VOI in this cohort, then the findings may suggest that the microstructural alterations represent 

changes in the extracellular space rather than cell-specific intracellular space in patients with DMD. In future studies, these findings could be related to the behavioral 

and cognitive deficits in this population, to further clarify and explain their origin. 
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Figure 1. Representative illustration of a merged T1, DTI FA map, and volume of interest (red box) of the DWS scan. 

 

 DMD Control 

 Total NL UK Total  NL UK 

n =  20 9 11 10 6 4 

Age mean, ± SD (years 15.6 ± 4.6 16.0 ± 4.3 15.3 ± 5.0 16.3  3.3 16.2  2.6 16.5  4.6 

Age, range (years) 10 – 23 10 – 22 10 – 23 11 – 22 11 – 18 11- 22 

White matter fraction, ± SD (%) 77.7 ± 9.5 77.9 ± 10.7 77.6 ± 8.9 80.1  9.7 77.4  10.7 84.3  7.4 

Table 1. Participant characteristics of the DWS dataset (n=30). Independent samples t-tests were performed to compare patients versus controls and NL versus UK study centers for age and white matter 

fraction. No significant differences were found between groups.  

 

 DMD patients 

Mean (SD) (*10-4) 

Controls 

Mean (SD) (*10-4) 

tNAA ADC 

p = .57 

1.7 (.2) 1.6 (.2) 

tCr ADC 

p = .32 

1.7 (.2) 1.7 (.2) 

tCho ADC  

p = .17 

1.2 (.4) 1.4 (.2) 

Table 2.  Mean ADC and standard deviation for patients with DMD and healthy controls. Statistics were done using a general linear model.  

 

 

 

 

DMD patients  

Mean (SD) 

Controls  

Mean (SD) 

tNAA/tCr 

p = .36 

2.5 (.2) 2.4 (.1) 

tCho/tCr 

p = .12 

.4 (.1) 0.3 (.03) 

Table 3. Mean ratios and SD of tNAA/tCr and tCho/tCr  for patients with DMD and healthy controls. Statistics were done using a Student’s t-test.  
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Synopsis: The aim of this study was to compare ultrasound and MRI dimension measurements for eye tumours and to determine the most suitable measurement 

modality. MRI and ultrasound yield similar prominence measurements (median absolute difference 0.3mm) when tumour extent is visible on both modalities. 

However, in anteriorly located tumours, MRI measurements are more accurate, and using US for these tumours might lead to an underestimation of tumour diameter. 

MRI provided insight in 3D tumour geometry, even when tumour extent was difficult to visualize on US, enabling more accurate therapy planning and selection for 

uveal melanoma patients.  

Introduction: Uveal melanoma (UM) is the most frequently occurring malignant primary eye tumour, with approximately 6 cases per million person-years1. Ocular 

MRI, enabling 3D tumour imaging and providing a better soft tissue contrast than conventional 2D ultrasound (US), is increasingly used for the diagnosis, therapy 

planning and follow-up of UM2-4. Tumour prominence (thickness) and largest basal diameter (LBD) are the primary determinants for the brachytherapy applicator 

size and application time and are used to define the 3D clinical target volume in proton beam therapy. Within this study, we aim to compare US and MRI dimension 

measurements for UM and determine the most suitable measurement modality.  

Methods: Data of 25 UM patients with a wide range in size and location were analysed retrospectively after approval of the local ethics committee. Patients were 

scanned at 3 Tesla MRI according to the protocol of Ferreira5. The tumour was semi-automatically delineated on the 3D fat-suppressed contrast-enhanced T1-weighted 

images (T1gd: acquisition voxel size 0.8x0.8x0.8mm3, TE/TR 26/400 ms, scan time 02:07 min) and on the 3D turbo-spin echo T2-weighted images (acquisition voxel 

size 0.8x0.8x0.8mm3, TE/TR 330/2500 ms, scan time 02:57 min) in MeVisLab (MeVis Medical Solutions, Bremen, Germany). Tumours were delineated by an 

ophthalmic MRI expert with 7 years of experience. 

Prominence and largest basal diameter (LBD) were computed automatically from the MRI contours. The measurements from the T1gd contours were compared to 

the clinical US measurements, as the contrast between tumour and surrounding structures is largest on this sequence. 

Differences between T1gd and US measurements were related to tumour location in the anteroposterior direction. Tumours that were not completely visible on US 

or where the extent of flat tumour components was difficult to assess on MRI were assessed separately. We furthermore compared the prominence and LBD between 

T1gd and T2-weighted scans. 

Results: For 7/25 patients, the prominence and/or LBD measurement did not fit into the US FOV or the tumour top was not visible on US. All these tumours were 

located in the anterior 50% of the eye. In 3 of the 4 patients with an US prominence <4 mm, tumour extent was difficult to assess on MRI (Fig 1).  

When tumour extent was visible on both imaging modalities, median absolute differences were 0.3 mm (range 0.0-1.3 mm) for prominence and 1.1 mm (range 0.1-

2.8 mm) for LBD, respectively (Fig 2). For the LBD, 80% of measurements were more than 0.5 mm larger on MRI, possibly caused by difficulty in manually finding 

the optimal measurement plane with US, and choroidal enhancement at the tumour edge that was considered tumour on T1gd but not visible on US.  

For patients for whom the tumour extent was difficult to assess on one imaging modality or both, the median absolute difference for the prominence and LBD were 

0.7 mm (range 0.5-1.6 mm) and 1.4 mm (range 0.1-7.6 mm). Here, the larger differences in tumour prominence could be caused by an oblique cut through the tumour 

with US, due to tumour location and tissues surrounding the eye limiting an optimal probe placement. Furthermore, for patients with flat tumours or tumours with 

flat extensions, differences may be caused by difficulty assessing the extent of the tumour on both MRI and US.  

For the T1gd-T2 comparison, the median absolute difference for the prominence was 0.3 mm. For 19/25 patients, the difference between T1gd and T2 prominence 

was <0.5mm. For the LBD, the median absolute difference was 1.6 mm, with T1gd>T2 for 23/25 patients. 

Discussion: MRI and US yield similar prominence measurements (median absolute difference 0.3 mm at an acquisition voxel size of (0.8mm)3 and an ultrasound 

intra-observer variability of 0.6 mm 5) when tumour extent is visible on both modalities. However, in anteriorly located tumours, MRI measurements are more 

accurate, and using US for these tumours might lead to an underestimation of tumour diameter. In this study, choroidal enhancement at the tumour edge is considered 

tumour, since no histopathological evidence is known that suggests otherwise. MRI gave insight in 3D tumour geometry, even when tumour extent was difficult to 

visualize on US, potentially enabling more accurate therapy planning and selection for uveal melanoma patients. 

The extent of flat tumours can be difficult to assess on MRI, although, the distinction between tumour and healthy tissue may not be evident on US either. For these 

tumours, tumour measurements may be supported by fundoscopic imaging.    

Furthermore, this study shows that differences exist between measurements performed on T1gd and T2-weighted scans. Without histopathological confirmation of 

the underlying cause of choroidal enhancement, it is difficult to conclude which measurement is correct. For now, we advise to perform measurements on T1gd to 

ensure no tumour tissue is missed.  
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Figure 1: Examples of prominence measurements on US and MRI. a: Measurements fit into field of view and extent is visible. b: Tumour top is  not visible on US.  

 

 

Figure 2. Difference between MRI and US measurements for prominence and LBD related to measurement on US and to location in AP direction (anterior: tumour center of mass in anterior 50% of the 

eye, posterior: tumour center of mass in posterior 50% of the eye). 
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Synopsis: 

Lesion visibility is unsatisfactory in approximately 30% of patients with liver metastases. This causes 4D-MRI guided treatment to become more 

challenging. The heterogeneity of T1 and T2 values was investigated in 23 patients by T1 and T2 mapping. Based on individual T1 and T2 values of 

the metastasis and surrounding liver tissue, personalized 4D-MRI sequence settings were calculated. These personalized 4D-MRI sequences 

improved the contrast between a metastasis and surrounding liver tissue in patients prospectively. 

Purpose: 

MRI-guided stereotactic body radiation therapy (SBRT) is an upcoming local treatment for liver metastases. The visibility of liver metastases during 

MRI-guided SBRT, however, is unsatisfactory in approximately 30% of patients1. Consequently, set-up correction and motion monitoring during 

treatment are challenging. We therefore propose to personalize the 4D-MRI sequence settings based on patient specific T1 and T2 values of the 

lesion(s) and surrounding liver tissue. 

Methods: 

23 patients with up to 3 liver metastases received 4D-MRI guided liver SBRT on a 1.5T MRI-linac. A 4D T2 TSE or 4D balanced GRE was used for 

set-up correction and motion monitoring. Additionally, before the first treatment fraction a sagittal T1 map (variable flip angle series) and transversal 

T2 map (k-t-T2 technique) were acquired for all patients during free breathing. 

The mean and standard deviation of T1 and T2 were calculated for regions-of-interest (ROIs) within the metastases and healthy liver tissue 

(excluding large vessels). These T1 and T2 values were used to determine the MRI sequence settings that yield optimal contrast between the lesion 

and surrounding liver tissue, through Bloch simulations. Contrast was defined as the relative difference of the mean MR signal intensity of the lesion 

ROI with respect to the liver ROI (i.e. C = (SIlesion – SIliver) / SIliver). 

Optimal values of the echo time, refocusing angle and parallel imaging (PI) factor for the 4D T2 TSE and number of startup echoes, flip-angle, PI 

factor and partial Fourier factor for the 4D balanced GRE were calculated. The optimal 4D-MRI sequences were tested prospectively on a subset of 

four patients at the end of a treatment fraction. To compare the contrast between the clinically used and optimized 4D-MRI sequences, the absolute 

ratio between them was calculated (i.e. |Copt / Cclin|). 

Results & Discussion: 

The measured T1 and T2 values are shown in Fig. 1 for all metastases. The median (range) T1 value of the liver and lesions across all patients were 

659 (450-892) and 1105 (578-2466) ms, respectively. T2 values of 58 (40-82) ms for liver and 85 (46-242) ms for metastases were found. 

The absolute contrast ratio, and thus lesion visibility, improved for all patients. A minimum and maximum absolute contrast ratio of 1.1 and 4.4 for 

T2 TSE and 1.02 and 5.9 balanced GRE were found. Fig. 2 shows the lesion visibility improvement of the optimized compared to the clinically used 

4D-MR images for the prospective test. Note brighter rim around the lesion in patient 2 and heterogeneous MR signal intensity within the lesion in 

patient 3 and 4. This makes delineation and contrast estimation more difficult. 

Conclusion: 

Based on the measured T1 and T2 of metastases and surrounding liver tissue, optimal MRI sequence settings could be calculated. Personalized 4D-

MRI sequence settings improved the contrast between a metastasis and surrounding liver tissue in patients prospectively. 
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Synopsis: A lack of validated, open-source code reduces the reliability of perfusion MRI, resulting in duplicate development. To address this problem, the Open 

Science Initiative for Perfusion Imaging (OSIPI) established a taskforce to collect, validate and harmonise such code. To date, 74 code contributions have been 

collected, with 14 of these tested. Source code and tests are published in an open-access repository. The OSIPI DCE/DSC-MRI code collection constitutes a valuable 

resource for researchers, and will ultimately be developed into a standardised, community-driven open-source code library. 

Introduction 

Perfusion MRI results show substantial variability dependent on the processing software used [1,2]. Furthermore, researchers expend substantial effort in writing 

bespoke code for their analyses because existing solutions are unavailable, unvalidated, difficult to use or provide insufficient functionality. Taskforce 2.3 of the Open 

Science Initiative for Perfusion Imaging (OSIPI) was therefore established to collect, validate and harmonise open-source code snippets for processing dynamic 

contrast-enhanced (DCE-) and dynamic susceptibility contrast (DSC-) MRI, as a resource for researchers and developers. Here we present initial results of code 

collection and validation. 

Methods 

A public call for code was made via the ISMRM Perfusion Study Group in February 2021, and contributions were published in a public repository [3]. To provide 

greatest utility for the most users, code to perform the most common steps of DCE- and DSC-MRI processing pipelines was prioritised. Initial code collection was 

restricted to the Python language, since it is open-source, widely used and has many high quality scientific computing libraries. 

To validate code contributions, automated scientific testing was implemented within the online repository using the Pytest package and the Github Actions feature. 

The aim is to verify that code outputs match previously defined or measured reference values to within an acceptable tolerance defined by the taskforce, and to 

document the outputs of each contribution. Test data was taken from digital reference objects (DROs) and clinical scans. Reference values for in-vivo test data were 

obtained using separate, trusted software; for DRO data, reference values supplied with the DRO were used. Code for variable flip angle T1 mapping was validated 

using a Quantitative Imaging Biomarker Alliance DRO (version 3 [4]), and in-vivo brain [5] and prostate [6] scans. Code contributions implementing the extended 

Tofts pharmacokinetic model were validated using data from an anthropomorphic DRO [7]. 

Results 

As of 1 November 2021, the repository hosts 74 distinct units of perfusion functionality contributed by 11 individuals and groups. This includes code implementing 

all core aspects of DCE- and DSC-MRI processing, for example T1 mapping, concentration estimation and perfusion parameter derivation, as shown in Table 1.  

Details of all collected code can be viewed in the online repository [3]. 

Validation is in-progress across all core areas of functionality (Table 1). Preliminary results for seven T1 mapping implementations are shown in Figure 1. All results 

matched the reference values to within the tolerance, and multiple implementations of equivalent algorithms generated similar outputs. For the extended Tofts 

pharmacokinetic model, five different code contributions were validated. The resulting estimates of Ktrans, ve and  vP were within the tolerances (Figure 2). 

Discussion 

DSC-MRI functionality is currently underrepresented in the repository; we therefore encourage new code contributions in this area. We also aim to collect code 

implementing additional aspects of perfusion processing, such as model selection, multiple pulse sequences and water exchange effects. Where Python code is 

unavailable, the taskforce may decide to translate or provide wrappers to contributions written in other languages such as Matlab and C++. 

Contributions tested thus far yielded results in good agreement with reference values. Testing is currently being expanded to cover broader parameter ranges, different 

pharmacokinetic models and other processing steps. A challenge of the pass-fail testing approach is that tolerances are subjective and difficult to determine, and 

binary test outputs provide limited useful information to potential users. We are therefore exploring complementary approaches for automated documentation and 

visualisation of code outputs. 

Finally, the taskforce aims to enhance the value of the repository by integrating contributions into the OSIPI Perfusion Analysis Library, which will be maintained 

by the perfusion community to facilitate standardised processing and reporting of perfusion MRI. 

Conclusion 

The OSIPI Taskforce 2.3 code collection constitutes a valuable and growing resource to benefit researchers using contrast-based perfusion imaging. Our approach, 

which is based on open-source tools and free web-based services, may be a valid model for open science initiatives in other MRI subfields.  
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Synopsis: Navigated transcranial magnetic stimulation (nTMS) motor mapping allows locating function in the individual patient pre-operatively and, to a certain extent, decreases the false-positive rate for 
fiber tractography. However, the false-negative rate is still high. In this work we evaluate novel multi-level fiber tractography (MLFT) along with conventional deterministic algorithms in patients with motor-

eloquent high-grade glioma, combined with nTMS mapping-based region of interest (ROI) placement. The results were compared based on the coverage of nTMS motor maps, revealing reconstruction of 

the corticospinal tract (CST) with significantly higher volume and better coverage of the eloquent motor cortex for MLFT. 

Purpose: Despite diffusion MRI (dMRI) offers an in-vivo insight into neuroanatomy by performing white-matter fiber tractography1. However, conventional approaches are known to have limitations and 
may produce false-positive and false-negative pathways2. Furthermore, placement of regions of interest (ROIs) for subsequent tractography can be challenging. This holds in particular for the common case 

of patients with functionally eloquent brain tumors, (due to altered anatomo-functional architecture and functional reallocation3,4,5). nTMS allows locating function in the individual patient pre-operatively 

and enables ROI definition based on the individual functional motor map6,7. Combined with fiber tractography, nTMS can provide valuable input for surgery planning in patients with motor-eloquent lesions6,7. 
However, the false-negative rate is still high in tractography. In this work we evaluate recently proposed MLFT8 along with deterministic diffusion tensor imaging (DTI)-based as well as constrained spherical 

deconvolution (CSD)-based tractography in patients with motor-eloquent high-grade glioma. Pre-operative nTMS motor mapping was used for ROI definition. We evaluated the aforementioned algorithms 

based on their coverage of the nTMS motor maps and explored the effect of an angular-deviation threshold (ADT) as well as fractional anisotropy threshold (FAT). 

Methods: We used pre-operative data of 31 adult patients diagnosed with high-grade glioma in motor-eloquent location. All patients underwent functional mapping of upper and lower extremity motor 
function using nTMS (Nexstim eXimia NBS system, Nexstim Plc.), providing an individual motor map based on motor-evoked potentials elicited by neuronavigated single-pulse stimulation6,7. 3-Tesla dMRI 

(Achieve dStream, Philips Healthcare) was acquired with one volume at b=0s/mm2 and 32 volumes at b=1000s/mm2 with uniformly distributed gradient directions and a voxel size of 2 mm isotropic. Brain 

parcellation was performed using FreeSurfer9, preceded by lesion segmentation and lesion filling10,11,12. The dMRI data were corrected for motion and eddy currents, and co-registered to the corresponding 

T1-weighted images using ExploreDTI13. The fiber orientation distributions (FODs) were estimated using recursive calibration of the response function14. A spherical harmonics order of 𝐿𝑚𝑎𝑥 = 6 was used15. 

We performed tractography using MLFT, deterministic CSD-based, and deterministic DTI-based algorithms. Three ADTs (20/45/60) and a FOD peak threshold of 0.08 (for MLFT and CSD-based 

tractography) was used. For DTI-based tractography, three FATs (25%/50%/75% FAT) were considered, referring to the minimum threshold enabling reconstructing a minimum fiber course (i.e., 100% 

FAT)16. The seed region was defined as a cross-section at the anterior pontine level of the brain stem17 . The target region for tractography was obtained by enlarging each motor-positive nTMS point by a 

hull of 2 mm radius6,7,18. The ratio of connected spots was counted per each algorithm and parameter configuration, providing the coverage of the nTMS motor map, where connected spots are motor-positive 

nTMS points (with 2-mm hulls) visited by at least one pathway of a reconstructed bundle. The significance of the parameter changes was estimated using Wilcoxon tests. In addition, we calculated the 

volumes of the reconstructed CST. 

Results: Compared to DTI- and CSD-based algorithms, MLFT was capable of reconstructing the CST with higher volumes than the DTI- and CSD-based algorithms, (Figure 1). Moreover, coverage of the 
nTMS motor map (i.e., motor-positive nTMS spots with their hull that are visited by reconstructed fibers) was highest for MLFT, with statistically significant differences compared with DTI- and CSD-based 

algorithms (in all comparisons using Wilcoxon tests with alternative hypothesis that MLFT-produced coverage is lower:  p<0.01 each). The CSD-based algorithm showed performance comparable to the 

DTI-based algorithm at the lowest ADT, while the nTMS motor map coverage achieved with DTI-based tractography primarily varied with the change in FAT. Additionally, the change in ADT showed to 

be statistically significant in almost all instances (except for 75% FAT for DTI-based reconstruction). 

Discussion and Conclusion: The newly proposed MLFT provides reconstruction of the CST in patients with motor-eloquent high-grade glioma with larger bundle volume and coverage of the nTMS motor 

map than deterministic DTI- and CSD-based tractography. It was also shown to consistently gain the coverage by increasing the ADTsError! Reference source not found., similar to CSD-based tractography. 

DTI-based tractography, however, did not show practically significant changes with ADT alteration, despite the results at different ADTs being statistically significant in most cases, which may be an 
illustration of the model’s inability to resolve complex fiber configurations19. Given that DTI is widely applied in the distinct pre-operative setup of patients with functionally eloquent tumors but has well-

known shortcomings20,21, MLFT may provide a more detailed and complete reconstruction of the CST compared to DTI-based fiber tractography. Furthermore, the results show the importance of the parameter 

setting choice for clinical application. Given that MLFT is capable of estimating high-angular fiber distributions, changing ADTs appears to be promising and should be tested and verified by intraoperative 
direct electrical stimulation as the next step. In case of DTI, experiments with FAT appear to be more beneficial for the improvement of the extent of reconstruction. In conclusion, MLFT could improve fiber 

tracking of the CST in patients with brain tumors beyond DTI, but attention has to be paid to the distinct parameter settings to obtain optimal results. 
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Figure 1. Exemplary case of nTMS-based reconstruction of the CST. A cross-section of the brain stem (light blue) placed at the anterior pontine level was used as a seed region for tractography. The nTMS-

based motor map (green; single motor-positive nTMS points with a 2-mm hull) was used as the target region for reconstruction in the vicinity of a tumor (red). 

 

Table 1. Volumes of the bundles reaching the nTMS motor map. For DTI three angular thresholds as well as three FA thresholds are included. 

 

Figure 2. Ratio of the nTMS motor maps that is visited by fiber bundles reconstructed with DTI-based (with 25, 50, and 75% of the individual fractional anisotropy threshold [FAT]), CSD-based, and MLFT 

tractography. Change of the angular-deviation thresholds (ADTs) appears to only have visible effect on the result of CSD-based tractography and MLFT. 

 

Table 2. The nTMS motor map coverage by the three algorithms given varied angular threshold as well as varied FA threshold in case of DTI. 

 

Table 3. P-values obtained from comparing the nTMS motor map coverage given varied angular deviation thresholds (ADTs) using paired Wilcoxon tests. Using a significance level  = 0.05, the difference 

caused by changing the ADT is significant for all cases except at 75% of the individual fractional anisotropy threshold (FAT) for DTI-based tractography. 
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Synopsis 

The structural brain-age makes predictions based on changes in tissue integrity. Adding cerebrovascular MRI biomarkers may add sensitivity to physiological and 

metabolic changes, hence complementing structural brain-age, and possibly improving its early pathology sensitivity. Baseline and follow-up T1w, FLAIR, and ASL 

data of 233 healthy participants and combinations of features and algorithms were used to predict ‘Cerebrovascular brain-age’. 

The ExtraTrees algorithm utilising T1w, ASL, and FLAIR features performed best and showed good longitudinal reproducibility. 

 

Introduction 

The brain-age method is able to estimate the biological brain age using structural MRI images, with a mean absolute error (MAE) of 5.3 years [1].The brain-age 

offset to the chronological age — the age gap — is associated with cognitive pathology in healthy and cognitively impaired cohorts [2]. The structural brain-age 

makes predictions based on changes in brain-tissue integrity and irreversible structural changes. Adding vascular or functional MRI biomarkers may add sensitivity 

to physiological and metabolic changes, hence complementing and improving structural brain-age, and possibly improving its sensitivity to earlier disease changes. 

Arterial spin labeling (ASL) MRI is a potential early biomarker displaying changes in both blood supply and demand, and was shown to correlate with the initial 

stages of cognitive pathology [3]. First results by Rokicki et al. showed that ASL-derived features do improve brain-age prediction (r2=0.77,MAE = 6.4 years) [4]. 

It remains to be studied whether the use of other ASL-derived parameters, such as the spatial Coefficient of Variation (CoV) and vascular-territory derived (VT) 

CBF, may improve brain-age estimation even further [5,6]. These features incorporate ASL imaging properties that reflect age, such as arterial transit artefacts 

(ATA), in VT’s that are directly related to cerebrovascular health. In this study, we propose the ‘Cerebrovascular brain-age’ as a combination of T1w, FLAIR, and 

ASL image features. We will compare its performance between different machine learning methods and image features, and estimate its long-term reproducibility. 

 

Methods  

Methods-study design/data  

Baseline and follow-up (1.7±0.5 years) T1w, FLAIR, and 3D spiral PCASL data of 233 healthy participants (36.8% male, age: 61.4±13.5 years) were drawn from 

the NORMENT (Norwegian Centre for Mental Disorders Research) StrokeMRI dataset [4], of which image acquisition specifics were described previously [4]. 

Image processing was performed with ExploreASL (Figure 1A) [7]. All images were registered to T1w and spatially normalised to MNI. 

Comparison of machine learning models & image features  

We compared different features (Figure 1A), feature sets (Figure 1B), and machine learning algorithms readily available within Python packages scikit-learn 

version 0.23.1, xgboost library version 1.2.0, and sklearn_rvm library version 0.1.1 (Figure 1C). To correct for individual physiological differences, CBF features 

were normalised by deep WM CBF [7], which was not associated with age. Model performance was assessed for each algorithm and feature set combination, using 

MAE of age gaps — chronological minus predicted brain age —and 300 Monte-Carlo cross-validation simulations using a 70%:30% train-test split (n=326 : 

n=140). The optimal combination of machine learning method and image features was used in subsequent analyses, described below. 

Comparison with existing brainageR model  

Model performance was compared to brainageR (trained on 3337 healthy individuals, age: 40.6±21.4 years, age-range 18-92 years [8]) using the best-performing 

model and feature set using a single 70%:30% train-test split.  

Validation with follow-up data  

The best-performing model was selected based on the lowest MAE and assessed for robustness by looking at back-to-back repeatability. Age gaps were calculated 

for baseline and follow-up in the same train-test split mentioned above. Next, we tested if the age gaps at follow-up differed fromage gaps at baseline using the 

paired t-test and intra-class correlation coefficient (ICC). Lastly, we compared the age gaps of the best performing model and T1w feature set using the paired t-test. 

 

Results 

Comparison of machine learning models & image features  

The ExtraTrees algorithm showed the lowest MAE for most feature sets, lowest for T1w+FLAIR+ASL (MAE = 4.47) (Figure 2). 

Comparison with brainageR  

The ExtraTrees algorithm with T1w+FLAIR+ASL features performed better than brainageR (MAE = 5.36 and 5.67 respectively) in the single 70:30 split, but the 

difference was not significant (p = 0.06) (Figure 3).  

Reproducibility in follow-up data  

The ExtraTrees results showed very good reproducibility. The average baseline and follow-up age gaps were similar, respectively -1.18 ± 6.7 and-1.31 ± 6.2 years 

(p=0.38) with an average difference of 0.135 ± 3.8 years only (ICC = 0.83) (Figure 4). Reproducibility of T1w+FLAIR+ASL features, assessed as the average age 

gap differences between baseline and follow-up (p=0.17), was equally good as for only T1w features (Figure 5). 

 

Discussion  

Our results show that the addition of ASL and FLAIR features to structural brain-age can improve the prediction of brain-age and shows good long-term 

reproducibility. Out of the algorithms we compared, ExtraTrees performed the best. However, we could not improve the biological age prediction significantly from 

the existing brainageR model; probably because the brainageR model was trained with a larger population and wider age range. Furthermore, our model slightly 

overestimated young age and underestimated old age, which is the opposite to brainageR. Despite our relatively small population and the physiological variability 

of CBF, our cerebrovascular brain-age prediction remained relatively consistent from baseline to follow-up. Our potential limitations include the relatively small, 

single-site, training and validation set. Future studies are encouraged to include multiple(longitudinal) cohorts and scanners to improve generalisation, and try to 

determine correlations between Cerebrovascular brain-age and cognitive decline. 
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Figure 1: Systematic overview of different features (A), feature sets (B) and different algorithms (C) used 
to predict brain age. CBF = cerebral blood flow; CoV = coefficient of variation; GM = grey matter; WM 

= white matter; WMH = white matter hyperintensity; CSF = cerebrospinal fluid; ICV =intracranial volume; 

ACA = anterior cerebral artery territory; MCA = middle cerebral artery territory; PCA = posterior cerebral 

artery territory. Figure 2: MAE for various algorithms and different feature sets after 300 rounds of 

Monte-Carlo cross-validation. 

Figure 3: Predicted brain ages of the ExtraTrees, using the T1w+FLAIR+ASL 

features, and brainageR algorithms. 

Figure 4: Age gaps of baseline and follow-up sessions obtained with the ExtraTrees 

algorithm using the T1w+FLAIR+ASL features. 

Figure 5: Bland-Altman plot showing the difference of age gaps between baseline and follow-up for T1w 

and T1w+FLAIR+ASL features, per baseline age gap. 
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Synopsis: Recently white matter hyperintensity (WMH) shape was introduced as a promising novel marker that may provide a more detailed characterization of 

WMH than volume alone. We aimed to investigate the association between WMH shape and the occurrence of dementia later in life in community dwelling older 

adults. WMH shape markers and WMH volumes were determined for periventricular/confluent, and deep WMH. A more complex shape of periventricular/confluent 

WMH (higher fractal dimension), as well as total and periventricular/confluent WMH volume, were associated with a greater risk of dementia. These results may 

indicate a prognostic value of WMH shape markers. 

Introduction: Cerebral small vessel disease (SVD) is a key contributor to the development of dementia 1. White matter hyperintensities (WMH) are a key imaging 

marker of SVD and become evident as hyperintense lesions on fluid-attenuated inversion recovery (FLAIR) MRI images 1. Previous research has shown that WMH 

volume is related to the occurrence of dementia 2. Recently WMH shape was introduced as a promising novel marker that may provide a more detailed characterization 

of WMH than volume alone. WMH shape has been associated with the occurrence of future stroke and increased mortality in patients with an increased vascular 

burden 3. However, the association of WMH shape and occurrence of dementia later in life remains unknown. Therefore, we aimed to investigate the association 

between WMH shape and the occurrence of dementia later in life in community dwelling older adults. 

Methods:  

Participants & study design  

This abstract includes a randomly selected subset (n=350) of the AGES Reykjavik study 4. At baseline, FLAIR and T1-weighted brain MRI scans were acquired on 

a 1.5 Tesla Signa Twinspeed device (General Electric Medical Systems, Waukesha, Wisconsin). Dementia outcome was determined as a binary variable (yes/no) by 

contacting the nursing homes 10.2 ± 2.4 years after the baseline MRI scan. The inclusion and exclusion of participants from the AGES-Reykjavik study for the current 

research are illustrated in Figure 1. 

WMH markers 

WMH were segmented automatically using the registered FLAIR images in the LST toolbox in SPM12. The lateral ventricles were segmented using the T1 scan and 

subsequently inflated with both 3 and 10 mm. The inflated ventricle masks were used to classify WMH into periventricular, confluent, and deep WMH (see Figure 

2). WMH shape markers were calculated based on the WMH segmentation. Convexity, solidity, concavity index, and fractal dimension were determined for 

periventricular/confluent WMHs 5. A lower convexity and solidity, and higher concavity index and fractal dimension indicate more irregularly shaped periventricular 

or confluent WMH. For deep WMHs, fractal dimension and eccentricity were calculated 5. Mean shape values across all WMHs per participant were determined 5. A 

higher eccentricity and fractal dimension indicate a more complex shape of deep WMH. We also calculated the volumes of periventricular/confluent, deep, and total 

WMH. WMHs consisting of less than 5 voxels were not further analysed, since WMH shape markers cannot be calculated accurately on small volume WMH 6. 

Statistical analysis 

Cox regression was performed for z-scores of WMH shape markers, controlled for age and sex. Solidity and WMH volumes were natural log-transformed due to non-

normal distribution. For WMH volumes, regression models were additionally controlled for intracranial volume. 

Results: Baseline characteristics of the study sample can be found in Table 1. A higher fractal dimension of periventricular/confluent WMH was associated with a 

greater risk of developing dementia later in life (HR 1.50, 95% CI (1.09–2.07); p=0.013). A higher fractal dimension indicates a more complex shape. No significant 

associations were found for the other WMH shape markers (Table 2). Total WMH volume (HR 1.88, 95% CI (1.21–2.70); p=0.001) and volume of 

periventricular/confluent WMH (HR 1.80, 95% CI (1.28–2.54); p=0.001) were associated with a greater risk of developing dementia later in life (Table 3). No 

association was found for deep WMH volume. 

Discussion: We found that a more complex shape of periventricular/confluent WMH as measured by the fractal dimension was associated with a higher risk of 

dementia later in life in community-dwelling older adults. Moreover, total WMH volume, as well as the volume of periventricular/confluent WMH, were associated 

with dementia status at follow-up, which is in line with previous studies 2. Due to a heterogeneous aetiology of WMH in SVD, the MRI phenotypes associated with 

different underlying pathophysiological processes may appear as distinguishable WMH shape patterns 7. The shape of periventricular/confluent WMH, for instance, 

may depend on the macrostructure of the small vessels surrounding the lateral ventricles. Determination of WMH shape may aid prognostic differentiation, which is 

currently only possible in a limited way with WMH volume or count alone 7. We are the first to study the association between WMH shape markers and dementia 

outcome. It should be noted that these are preliminary results on a smaller subset of our dataset. The results may differ when the whole dataset is considered. Therefore, 

a final conclusion can be drawn when the ongoing analysis has been completed. 

References:  

1. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: Insights from neuroimaging. Lancet Neurol. 2013;12(5):483-

497,   

2. Bos D, Wolters FJ, Darweesh SKL, et al. Cerebral small vessel disease and the risk of dementia: A systematic review and meta-analysis of population-based 

evidence. Alzheimer’s Dement. 2018;14(11):1482-1492,  

3. Ghaznawi R, Geerlings MI, Jaarsma-Coes M, et al. Association of White Matter Hyperintensity Markers on MRI and Long-term Risk of Mortalityand 

Ischemic Stroke. Neurology. 2021;96(17):e2172-e2183, 

4. Harris TB, Launer LJ, Eiriksdottir G, et al. Age, gene/environment susceptibility-reykjavik study: Multidisciplinary applied phenomics. Am J Epidemiol. 

2007;165(9):1076-1087,  

5. Ghaznawi R, Geerlings MI, Jaarsma-Coes MG, et al. The association between lacunes and white matter hyperintensity features on MRI: The SMART-MR 

study. J Cereb Blood Flow Metab. 2019;39(12):2486-2496,  

6. De Bresser J, Kuijf HJ, Zaanen K, et al. White matter hyperintensity shape and location feature analysis on brain MRI; Proof of principle study in patients 

with diabetes. Sci Rep. 2018;8(1):1-10,  

7. Alber J, Alladi S, Bae H, et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and 

opportunities. Alzheimer’s Dement Transl Res Clin Interv. 2019;5(1):107-117.  

The association between white matter hyperintensity shape and long-term dementia outcome 

in community-dwelling older adults  

adults 
 

 

 

P-069 
 

Abstract Category Clinical 

 

 



 

 

Figure 1. Flowchart illustrating the inclusion and exclusion of 

participants. 

Table 1. Baseline characteristics of the study sample. Data are 

indicated as mean ± standard deviation or n (percentage). a Education 

level is the highest level of education that has been completed, where 1 = 
primary school, 2 = secondary school, 3 = college, and 4 = university. 

BMI: Body mass index. 

Table 2. Cox regression results of 

WMH shape markers. * p<0.05 

Table 3. Cox regression results of 

WMH volumes. Volumes are given in 

millilitres. ** p<0.01 

Figure 2. Illustration of the image processing pipeline. Lateral ventricles were segmented using T1-
weighted MRI images. WMH segmentation was performed on the registered FLAIR (rFLAIR) images. 

Using two different  inflated ventricle masks, WMH were classified into three types (deep, periventricular 

and confluent). Based on the resulting WMH type, different WMH shape markers were calculated. 
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Synopsis: Gastric emptying abnormalities are frequently observed in diabetes patients. Here we explored whether dynamic 3D DMI could be a radiation-free alternative for 

scintigraphy to measure the gastric emptying rate. One volunteer was scanned after oral intake of deuterated glucose and proximal and distal gastric emptying was monitored. The 

distribution of the glucose load in the proximal and distal parts of the stomach and the rate of gastric emptying agreed well with scintigraphy results. DMI has potential to investigate 

gastric emptying abnormalities in patients with diabetes, while at the same time providing information on glucose uptake and metabolism in the liver. 

Introduction: Gastric emptying is the process of nutrients moving from the stomach into the duodenum at a regulated rate1. Gastric emptying abnormalities are frequently observed 

in diabetes and include both slow/delayed and fast gastric emptying2. While delayed gastric emptying can cause hypoglycemia in diabetes patients using exogenous insulin, rapid 

gastric emptying is emerging as major determinant of postprandial hyperglycemia2. The current gold standard for the assessment of gastric emptying is scintigraphy3. Deuterium 

metabolic imaging (DMI)4–10 with deuterated glucose could potentially be used as a radiation-free alternative to assess gastric emptying, while at the same time providing information 

on glucose uptake and metabolism in surrounding tissues, such as the liver. Previously, we have demonstrated the feasibility of monitoring liver glucose uptake and metabolism with 

DMI using a dedicated 4-channel deuterium body array at 7T. In the current study, we measured gastric emptying with dynamic 3D DMI using the same setup. 

Methods: The study was approved by the local medical ethics committee. DMI measurements were performed at a 7T whole-body MRI system (Philips Healthcare, Best, 

Netherlands), with a dedicated setup consisting of 4 deuterium (2H) transmit/receive loop coils and 4 proton (1H) transmit/receive dipole antennas. Image-based B0 shimming and 

acquisition of coronal and axial T1w reference images for DMI planning were performed with the 1H antennas. DMI measurements were performed with a pulse-acquire sequence 

using a 1 ms block pulse, followed by phase encoding gradients for 3D spatial encoding, and TE/TR=1.95/333 ms, nominal voxel size=30x30x30 mm3, matrix 

size=8(AP)x10(LR)x9(FH), NSA=4, and temporal resolution=5:08 min. DMI acquisitions were made using a Hamming-weighted k-space acquisition pattern. No respiratory gating 

was applied. One healthy volunteer was scanned after an overnight fast. A load of 50 grams of [6,6’-2H2]glucose was dissolved in 200 ml water and administered orally through a 

tube while the subject was laying in the scanner. Two baseline scans at natural abundance were acquired before deuterated glucose intake and DMI scans were continued up to 130 

min after intake. Reconstruction and processing of the raw DMI data was performed with an in-house written MATLAB script (MathWorks, Natick, MA, USA). Channel 

combination was performed using the Roemer equal noise algorithm11. The deuterated glucose signal (3.8 ppm) was fitted using AMARES12. Glucose maps were created using the 

amplitude of the fitted glucose signals. Axial T1w images were used to draw ROI’s for proximal and distal parts of the stomach and the sum of the two ROI’s was used as total 

stomach ROI. Glucose signal amplitudes were added within each ROI, and the glucose signal in the first measurement after glucose intake in the total stomach ROI was set to 100%. 

For the total stomach ROI, the time course of glucose signal amplitudes was fitted to a mono-exponential function to determine the emptying half time (T50).  

Results: A very strong deuterated glucose signal was observed in the proximal part of the stomach immediately after administration of deuterated glucose and, although it was 

slowly decreasing thereafter, the glucose signal stayed high until the last measurement at 130 min after glucose intake (Figures 1 and 2). In contrast, in the distal stomach the glucose 

signal disappeared almost completely 20 min after intake (Figure 2). Figure 3 shows the ROI’s for the proximal and distal parts of the stomach on the T1w axial images. Figure 4 

shows the distribution and time courses of glucose signal in the proximal and distal parts of the stomach, relative to the total stomach glucose signal. About 80% of the glucose signal 

was initially observed in the proximal stomach, which then decreased more or less linearly over time. In the distal stomach, the glucose signal decayed rapidly during the first 20 min 

and then remained at a constant low value (~7%) up to 130 min. For the total stomach glucose signal, the fitted T50 was 80 min (Figure 5).  

Discussion/Conclusion: We demonstrated the measurement of gastric emptying with dynamic 3D DMI. Using scintigraphy, it has been shown that both the nutrient load and the 

volume of the load affects the gastric emptying rate, as the regulation is dependent on the amount of calories entering the duodenum13,14. Moreover, intragastric distribution of a 

labeled glucose drink is different between seated and lying positions, and especially the distal gastric emptying rate is affected by posture15. However, it was shown that the overall 

gastric emptying rate is not significantly different for seated and lying positions15. Compared to a scintigraphy study in seated subjects using a similar glucose load and volume as in 

our study, we observed a slightly shorter T50 for the whole stomach (80 vs 103 min)16. The intragastric distribution of the glucose load and the different patterns for proximal and 

distal gastric emptying agree well with scintigraphy results of subjects in a lying position15.In conclusion, dynamic 3D DMI allows monitoring of proximal and distal gastric 

emptying without radiation burden. This technique could be applied to investigate gastric emptying abnormalities in patients with diabetes, and results can be linked directly to 

hepatic glucose uptake and metabolism, through simultaneous measurement with a deuterium body array setup. 
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Figure 1. Deuterium spectra from a voxel located in the proximal part of the 

stomach at baseline and 0-130 min after oral administration of [6,6’-2H2] glucose. 

A high deuterated glucose signal was observed in the stomach immediately after 

glucose intake, which decreased gradually, but stayed high until the end of the 

scan. 

Figure 2. Coronal color maps of fitted deuterated glucose signal amplitudes (in AU) from 5 

selected 3D DMI measurements between 0 and 130 min after oral administration of [6,6’-

2H2]glucose. Signal amplitudes larger than 1 are represented in white. The color maps are 

overlaid on the T1w images. The signal in the distal part of the stomach faded around 20 min 

after administration, while it remained hyperintense in the proximal stomach until the end of 

the experiment. 

Figure 3. ROI’s for distal (blue) and proximal (green) parts of the stomach. 

Masks were drawn on T1w axial images. The ROI for the distal part of the 

stomach was drawn in the axial slice in which both kidneys were visible. 

Figure 4. Glucose retention graph for total, proximal and distal stomach. Glucose retention is 

defined as the sum of the deuterated glucose signal amplitudes within each ROI, expressed as 

a percentage of the glucose signal in the total stomach ROI in the first measurement after 

deuterated glucose intake (=100%). 

Figure 5. Mono-exponential fit of the time course of the deuterated glucose signal in the total 

stomach ROI. The gastric emptying half time (T50) determined from the fit was 80 min. 
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Synopsis: Deuterium metabolic imaging (DMI) is an emerging technique to spatially map metabolism in vivo through the intake of deuterium labeled substrates such as [6,6′-2H2]-glucose. Although DMI 

has the potential to become a powerful tool to assess liver metabolism, it has limitations due to its long scan time, and low signal-to-noise ratio (SNR) for high spatial resolution in the human body. In this 

work, we demonstrated the feasibility of low-rank and subspace modeling (LRSM) reconstruction to increase SNR by reducing spectral noise, allowing high spatiotemporal resolution for 3D DMI of the 

human liver at 7T. 

 

Purpose: Deuterium metabolic imaging (DMI)1 is an emerging metabolic imaging technique that can spatially map metabolism in vivo through the intake of deuterium-labeled substrates such as [6,6′-2H
2]-

glucose. At ultra-high fields (≥ 7T), deuterium MRSI (DMRSI) benefits from a significantly increased signal-to-noise ratio (SNR) and improved spectral resolution2. However, achieving full coverage of the 

human liver with high spatial resolution within a short acquisition time is challenging. The subspace imaging framework SPICE3,4 was proposed to enable fast acquisition of 3D MRSI with high resolution. 

The subspace-based image reconstruction5 was shown to reduce spectral noise in 3D 31P MRSI data of the human brain. In this work, we demonstrate the application of low-rank and subspace model 

reconstruction (LRSM) for effective denoising of 3D DMRSI data from the human liver at 7T. 

 

Methods: (1) Experiments Two healthy volunteers were scanned at a 7T MR system (Achieva, Philips, Netherlands) using a transmit-receive body array, including 4 proton dipole antennas and 4 deuterium 

loop coils. For one volunteer, a 3D DMRSI scan was obtained 2.5 hours after oral intake of deuterated glucose. Scan parameters: DMRSI in the human liver at natural abundance: 20×20×20mm3 voxels, 

FOV=240×360×300mm3, TR/TE=371/1.0ms, 1ms block pulse, spectral bandwidth=1443Hz, average=1, and acquisition time=20min 8s. DMRSI after oral glucose intake: 25×25×25mm3 voxels, 

FOV=250×300×300mm3, TR/TE=333/1.95ms, spectral bandwidth=5000Hz, weighted averages=4, acquisition time=10min 35s. (2) Numerical simulation A 3D high-resolution image (matrix 

size=256x256x12) was generated with three distinct compartments for numerical simulation: liver, stomach, and the rest of the body (including a subcutaneous fat layer). Metabolite signals for water, glucose, 

Glx, and lipids were generated by varying the amplitude of each signal using a Lorentzian lineshape. Deuterium spectra were simulated with a 10kHz spectral bandwidth and 2048 points. The high-resolution 

was down-sampled to the resolution of a typical DMI acquisition. Complex Gaussian noise (i.e., N(0, 1)) was added to the simulated deuterium signals with increasing noise standard deviation (0.01-0.2). (3) 

Reconstruction Our approach employs a low-rank and subspace modeling reconstruction where a temporal subspace is estimated from the fully sampled 5×5×5 k-space center region. Specifically, the 

unknown spatial basis U is estimated by solving the following least-squares problem: 

Ǔ =  argmin
U

‖𝑑 − Ω(FUV)‖2
2, 

where d ∈ U𝑃×1denotes the vector of k-space data and Ω(⋅): ℂ𝑁×𝑀 →  ℂ𝑃×1 is a linear operator that concatenates the measured data into a vector, F ∈ ℂ𝑁×𝑁 is the Fourier encoding matrix, and the columns 

of U and rows of V span the spatial and temporal subspaces of the Casorati matrix. The Roemer equal noise algorithm8 was used for channel combination. (4) Analysis After phase correction, the SNR was 

calculated according to SNR = 𝐼𝑤𝑎𝑡𝑒𝑟/𝜎(𝐼𝑛𝑜𝑖𝑠𝑒), where 𝐼𝑤𝑎𝑡𝑒𝑟 is the water signal intensity and 𝜎(𝐼𝑛𝑜𝑖𝑠𝑒) the standard deviation of the noise (8-12 ppm). Glucose and water maps were calculated by fitting the 

signal using the AMARES algorithm9. 

 

Results and Discussion: Figure 1 shows the generated numerical phantom mask in high-resolution and after down-sampling to low-resolution (Fig. 1A). The SNR (Fig. 2A) was calculated for different 

additive noise after applying two reconstruction methods: LRSM and FFT reconstruction. The LRSM reconstruction increased the SNR approximately 5-fold at noise level 10 (i.e., a noise standard deviation 

of 0.1). The metabolite maps of water and glucose (Fig. 2C) are similar to the ground truth when using either FFT or LRSM reconstruction with noise level 10. The Glx maps were noisier than the ground 

truth, especially for the FFT reconstruction (Fig. 2C). The average SNR (Fig. 3C) in the ROI of the liver (natural abundance DMRSI) was approximately 5-fold higher for LRSM compared to FFT 

reconstruction. While the natural abundance deuterated water signal was barely visible in some voxels with FFT reconstruction, LRSM reconstruction clearly showed signals in the liver. Figure 4 shows DMI 

data in the liver after oral intake of deuterated glucose for both reconstructions. The noise (Fig. 4B) is high and could be misinterpreted as a Glx signal for the FFT reconstruction, which is not the case for 

the LRSM reconstruction. The average SNR (Fig. 4C) of the deuterated water signal in the liver was about 3.5 times higher for the LRSM reconstruction. Glucose and water metabolite maps were created for 

both reconstruction methods (Fig. 5). The glucose map generated from the data with a single average showed more noise for the FFT reconstruction than for the LRSM reconstruction. 

 

Conclusion: This work demonstrates the implementation of low-rank and subspace modeling reconstruction of 3D DMI data of the human body at 7T. The reconstruction method reduces the noise level in 

the spectra, enabling metabolite detection in low SNR data. The enhanced metabolite detection could potentially increase spatial resolution and/or decrease acquisition time of 3D DMRSI, for example in 

combination with fast acquisition techniques such as DEPSI10. 
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Fig. 1: Schematic overview of the numerical simulation and representative spectra of each region. (A) 3D high-resolution phantom mask (A, left) was transformed to 3D k-space and truncated to a lower resolution (A, right). (B) In the deuterium spectrum, regions of interest 

(ROI) are shown, including the liver (orange box), stomach (blue box), and the boundary of the body (yellow box). (C, D, E) Representative spectra in each ROI: Water, glucose, and Glx signals are shown in the liver (C), glucose only in the stomach (D), and water in the 

body, and water and lipids in the body boundary (E) 

 

Fig. 2: Results from the numerical simulation phantom, when using two different reconstruction methods: Low-rank and subspace modeling (green) and Fast Fourier Transform (FFT) (blue). (A) The average SNR of the water peak of 108 voxels in the liver region was 

calculated for 20 different levels of added Gaussian noise. (B) Deuterium spectra from a liver voxel containing water, glucose, and Glx signals overlaid with the ground truth spectrum (i.e., noise-free). (C) Metabolite maps of both reconstructions are shown at noise level 10. 

 

Fig. 3: 3D deuterium MRSI dataset of the human liver at natural abundance processed by two reconstruction methods: low-rank and subspace modeling (green) and FFT (blue). (A) The 1H MRI image (Dixon) shows the liver which is contoured by a yellow line. (B) Deuterium 

spectra of four voxels are shown in the liver for both reconstruction methods. (C) The average SNR of the water peak was calculated for 22 voxels in the liver region (grey) of the middle slice. 

 

Fig. 4: 3D deuterium MRSI datasets of the human liver acquired 2.5 hours after oral glucose intake, processed by two reconstruction methods: low-rank and subspace modeling (green) and FFT (blue). (A) The 1H MRI image (Dixon) shows the liver which was contoured by 

a yellow line. (B) Deuterium spectrum of one voxel in the liver for both reconstruction methods. (C) The average SNR of the water peak was calculated for 23 voxels in the liver region (grey) of the middle slice. The DMI dataset was retrospectively reduced to one average. 

 

Fig.5: Deuterated glucose and water maps of the DMI data in the transverse plane without a smoothing filter. Metabolite maps were created by fitting the signal amplitude. Datasets of 4 weighted averages (A) and 1 average (B) were fitted. These maps showed the glucose 

and water signal intensity 2.5 hours after oral glucose intake and are processed using two reconstruction methods: low-rank and subspace modeling and FFT. (A) Note that for the data with 4 averages, metabolite maps looked similar. (B) For a single average, the glucose map 

was more noisy for FFT compared to LRSM reconstruction. 
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Synopsis: We developed a multi-echo sequence to detect phosphomonoesters (PME) and phosphodiesters (PDE), aiming for high signal-to-noise and T2-contrast to 

noise ratio per unit of time, with the constraint of a maximum available B1 of ~15μT. In line with MRI, the candidates were multi-echo MRSI with 180° pulses (full 

refocusing) and fast spin echo (FSE) with modulated variable flip angles. Multi-echo MRSI resulted in higher SNR at the same SAR level compared to a FSE with 

modulated refocusing flip angles. Using 9 dual-band echo pulses improved the SNR for PDE and PME more than two-fold compared to the FID signal alone.  

 

Purpose  
31P MRS can spectrally resolve phospholipid  metabolites involved in phospholipid metabolism which are altered in many cancers1. 7 Tesla facilitates the detection of PMEs (phosphocholine (PC), 

phosphoethanolamine (PE)) and PDEs (glycerophosphocholine (GPC), glycerophosphoethanolamine (GPE)) with increased SNR and spectral resolution. Multi-echo MRSI allows T2‐weighted SNR 

enhancement, for an increased metabolite sensitivity, or T2 information per metabolite2,3. In MR imaging, a widely incorporated method to  increase SNR per unit of time is the use of three-dimensional FSE 

with modulated refocusing flip angles (FA)4,5. This employs a very long echo train length (ETL; more than 100 in the brain) using variable, low FAs . We aimed to transfer this method to 31P MRS imaging. 

We simulated the use of variable FAs FSE in the 31P regime as a new approach for gaining SNR per unit of time within specific absorption rate (SAR) limits. The results were compared with a multi-echo 
technique with full refocusing pulses. However, the block pulses for this purpose require a high B1 (i.e. much higher than 15 μT which is maximal available with our 31P body-coil) to excite the frequency 

range of interest. As a solution, we have designed a dual-band refocusing pulse to be used at a maximum available B1 of ~15 μT6. This pulse selectively hits the two frequency ranges of interest (PDEs and 

PMEs) with the potential utilization for multi-echo sequences with more than 100 echo pulses. Finally, we implemented the dual-band pulse in a multi-echo MRSI sequence and validated the approach in a 

phantom and in vivo. 

 

Methods 

Simulations 

We simulated the effect of extending the ETL on the PDE and PME signals by using refocusing FA modulated FSE technique5. T1 and T2 of the metabolites used in simulation are listed in Figure 1A. TR=5.5s, 

nominal FA=15, maximum FA=130, and echo spacing=15ms. Weighted average SNRwa was calculated as in Eq. 1.  

𝑆𝑤𝑎 = 𝑆0
1+2 ∑ 𝑆𝑖𝑤𝑖

𝑛
𝑖=1

1+2 ∑ 𝑤𝑖
, 𝑆𝑁𝑅𝑤𝑎 =

𝑆𝑤𝑎

𝜎𝑤𝑎
= 𝑆𝑁𝑅0

1+2 ∑ 𝑆𝑖𝑤𝑖
𝑛
𝑖=1

√1+2 ∑ 𝑤𝑖
2

  Eq.1 

Where S0, SNR0, wi, Swa and σwa represent free induction decay (FID) signal, FID SNR, signal weight, weighted average signal and noise, respectively. The signal itself was used as signal weight. To compare, 

SNRwa and SAR of a multi echo sequence with full refocusing 180s with the same echo spacing of 15ms and the same number of echo pulses (100) was calculated as previously described2. FA squared was 

calculated as an alternative to SAR.  

Data Acquisition 

MRS measurements were carried out on a 7Tesla MR system (Philips, Best, NL) equipped with a double tuned 1H/31P head coil. We acquired spectra from a phantom containing PME, PDE and inorganic 

phosphate (Pi) and from a healthy volunteer (female, age: 28). The AMESING2 sequence (multi-echo) was modified such that the excitation was performed by a block 90° pulse, followed by 180° Shinnar-

LeRoux dual-band refocusing pulses (7ms) at 14.8 μT, with two refocusing bandwidths of 166Hz to hit the PDE and PME at 3.0-3.5 ppm and 6.2-6.8 ppm, respectively. A single FID by means of a pulse-

acquire and 5 and 9 full echoes in one k‐space step where acquired while k‐space data were sampled spherically. As a reference,  we performed the same experiments on a phantoms using the sequence with 

adiabatic pulses requiring high B1 of ~100 μT, which could only be obtained on the phantom surface with a homebuilt dual-tuned surface coil set-up2,7. (B1,rms
+)2 of the dual-band and adiabatic pulses were 

calculated as: 𝑆𝐴𝑅 ∝ (𝐵1, 𝑟𝑚𝑠
+

)
2

= 1
𝑇𝑝

⁄ ∫ 𝐵1
+(𝑡)2 𝑑𝑡

𝑇𝑝

0 . All multi-echo MRSI experiments were performed with a matrix size of 8 × 8 × 8, isotropic resolution of 20 mm, 1 average, 256 data points, spectral 

width 8200 Hz, ΔTE 45 ms (3-fold larger than simulated to minimize truncation artifacts in spectral domain), TR 5 s (in vivo) and 4 s (phantom). 

 

Results  

Figure 1 shows the simulated signals of PDE and PME by using modulated FA FSE approach. It  produces a refocusing flip angle train that rapidly brings the signals into pseudo-steady-state (PSS) conditions. 

Figure 2 shows SNR comparison for GPC signal. Multi-echo method with a number of 20 full refocusing 180 pulses resulted in SNR weighted average of 2.13 (considering T1 relaxation effect). FSE with 

modulated FAs gave an SNR weighted average of 1.76 at the same FA squared of 673. The spectra acquired from the adiabatic and dual-band ME implementations are shown in Figure 3A and B. Using just 

9 pulses increased SNR by more than a factor of 2 (Figure 3D). Figure 4 shows 31P spectra from the brain with PDE and PME signals being refocused by each echo pulse. 

 

Discussion and Conclusion  

Simulations showed that we can achieve higher SNR with a full 180 multi-echo sequence than a modulated FAs FSE sequence. Compared to the imaging FSE implementation, the echo spacing in our 31P 

FSE is much longer (15 ms vs 3 ms) resulting in signal loss due to T2 relaxation. Using the very low power dual-band pulses, within a TR of 5s the number of echo pulses could be increased when compared 

to adiabatic pulses ((B1,rms
+)2 of 0.246 μT2 compared to 62.277 μT2), which would result in higher SNR. In addition to increased SNR, T2 information of the metabolites can be estimated with this 

implementation. The in vivo results indicated the feasibility of using low power 31P dual-band pulses in multi-echo approaches instead of high power demanding adiabatic pulses. 
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Figure 1.Simulated signals of GPC,GPE, PC and PE, and modulated FA series. The simulated variable echo train is depicted in black. GPC, GPE and PE signal is constant until 1260 ms (echo 84), the PC 

signal starts to decrease at ~900 ms. Echo-spacing= 15 ms, TR = 5500 and ETL =100. 

 

Figure 2. (A) SNR of GPC as a function of number of echo pulses in multi-echo MRSI with 180ᵒ pulses. The noise is taken into account with the same T2 decay weighting as the signal. (B) SNR as a function 

of SAR in multi-echo MRSI compared with FSE with low FAs. SAR is proportional to the square of the flip angle. The maximum SNR of 1.76 was achieved for FSE with maintaining the signal for relatively 

long time of 1260 ms. SNR values were calculated from Equations 1. For multi-echo MRSI, the maximum SNR Was 2.13 after taking T2 relaxation effect into account. 

 

Figure 3. Spectra from a phantom containing PE, PC and GPC using adiabatic (A) and dual-band (B and C) pulses in the multi-echo spectralimaging for the voxel (contains GPC, PC and PE) shown in red. 
(D) SNR increased by more than 2 after implementing 9 echoes compared to the FID signal. Experiments corresponding to A and B were performed using a surface coil at B1 of ~100 μT (adiabatic excitation 

and refocusing) and B1 of 15 μT (block excitation and dual refocusing), respectively. Experiment C was done utilizing a quadrature head coil at B1 = 15 μT. 

 Figure 4. In vivo spectra acquired with dual-band multi-echo (5 echoes) sequence, showing resolved signal of PDE and PME. 
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Synopsis: MRS of hyperpolarised (HP-MRS) molecules yields 2-dimensional data. One dimension pertains to the FID of the HP-MRS signal at NFID time-points, 

the other to the concentrations of HP-molecules  at NHP time-points. The task is to estimate the NPAR model-parameters of the combined HP-MRS model-function 

from the data. Assuming the form of this model-function  to be known,  this estimation is best done with an advanced Levenberg-Marquardt algorithm. This 

involves computation of NPAR×NFID×NHP partial derivatives of the model-function w.r.t. the model-parameters, which is time-consuming. Here we compute >100 

times fewer partial derivatives and expect a corresponding reduction of the computing time. 

Introduction: For dynamic quantification of hyperpolarised (HP) metabolites1 with non-linear least-squares (NLLS) model-fitting2, one needs to derive formulas of 

the HP-metabolite-concentrations as a function of time.  In addition, partial derivatives of the formulas w.r.t. the HP model-parameters must be provided. Despite 

availability of symbolic algebra-toolboxes, the latter is tedious and error-prone for non-experts. Therefore, it is wise to invoke so-called Automatic Differentiation 

(AD) which is numeric, accurate, and fast. An advanced Levenberg-Marquardt version of NLLS, featuring AD, is GADfit3, which we used earlier for 1-dimensional 

data4. We recall that simultaneous processing of all 2-dimensional data together, is more precise than processing 1-dimensional subsets of the data successively2. In 

order to take advantage of relations between data-points of the 2-dimensional HP-MRS signal, we have adapted the original (real-valued) code of GADfit. This 

reduced the computation-time drastically. 

Methods: The heart of NLLS model-fitting is the computation of the Jacobian matrix J 5. In the present case, J has NPAR columns and NFID×NHP rows. The elements 

of J  are the partial derivatives of the HP-MRS model-function w.r.t. the HP-MRS model-parameters. At first sight, as many as NPAR×NFID×NHP partial derivatives 

need be calculated. However, owing to the 2-dimensional nature of the HP-MRS model-function, each FID-formula occurs NHP times and each concentration-

formula of a HP-molecule NFID times. Consequently, the number of  independent partial derivatives is much smaller than NPAR×NFID×NHP. Only independent partial 

derivatives need be computed; they serve as building-blocks from which one can assemble a complete Jacobian. Implementation of this fact in the existing code of 

GADfit necessitated separation of AD of the HP-formulas from that of the NMR-formulas, while preserving parallel computing with co-arrays. Also, we added an 

alternative AD-algorithm that can handle complex-valued NMR-formulas. GADfit is freely down-loadable from https://github.com/raullaasner/gadfit/releases. We 

use release 1.3 which is based on state-of-the-art Fortran 20186; release 1.4 is an adaptation of 1.3 for use by the C++ community. The HP-MRS signal was  

simulated as described in Ref.2; see Fig.1 for the corresponding spectra. The signal used for actual fitting was noise-free, enabling us to establish that the estimated 

parameter-values equalled the true values with high precision. 

Results: The main results are listed in rows 2 and 3 (of 4) of Table 1. NHP was set to 100 and NFID to 2048 real-valued points, implying that the HP-MRS model-

function was fitted to as many 204800 data-points simultaneously. When using only 1 CPU, i.e., parallel computing turned off, the execution time of 1 iteration is 

reduced from 56 s in the original version to 67 ms in our version, amounting to acceleration by a factor of 836. When using all 4 CPUs of the same PC,  i.e., 

parallel computing turned on, the acceleration factor is less, but still as high as 366. (From Table 1, one would expect titeration=0.067×15/56=0.019.) Apparently, our 

version does not yet optimally implement parallel computing. Furthermore, note that convergence of the fit needs 9 iterations in the original version, vs 22 iterations 

in our version; see row 4.   

Discussion: This Abstract concerns work in progress. The main goal, reduction of the computing-time by at least two orders of magnitude by exploiting relations 

between data-points of the 2-dimensional HP-MRS signal, has been achieved. This needed some drastic adaptation of the use of AD which is intertwined with 

parallel computing via co-arrays, in object-oriented fashion. As mentioned in Results, parallel computing in our version does not yet live up to its potential.  Yet, 

we aim to preserve all advanced Levenberg-Marquardt features implemented in GADfit’s original version. The latter and convergence-speed will be addressed in 

future research. 

Conclusion: We accelerated the advanced Levenberg-Marquardt program GADfit by two orders of magnitude for application to HP-MRS data. This enabled fitting 

to all 204800 data-points simultaneously within a second. The acceleration can be increased further by improving our handling of parallel computing with co-

arrays.  
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Figure 1.  Evolution of the FFT of the simulated HP-MRS signal, after  

injection of HP 13C-Pyr, using the same parameters as in Ref.2, plus  

added Gaussian noise.  Frequency in arbitrary units. 
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Synopsis: We have developed a novel 3T 1H-MRS sequence to detect acetylcarnitine. Acetylcarnitine has been investigated by 1H-MRS in muscle and is thought to 

play an important role in maintaining metabolic flexibility and insulin sensitivity. As decreased metabolic flexibility and insulin sensitivity are hallmarks of metabolic 

disease, techniques to study acetylcarnitine levels non-invasively are of great interest. The advantage of the new approach is the absence of subtraction schemes and 

a high signal intensity, while lipid resonances are sufficiently suppressed to uncover acetylcarnitine. This makes the sequence suitable for acetylcarnitine detection in 

tissues susceptible to respiratory motion, such as the liver. 

 

Purpose: The conversion of excessive acetyl-coA into acetylcarnitine has been suggested to play an important role in maintaining metabolic flexibility and insulin 

sensitivity under conditions of excessive substrate supply to the mitochondria.1,2 As decreased  metabolic flexibility and insulin sensitivity are early indicators of the 

development of metabolic disease, such as type 2 diabetes mellitus (T2D)3 and non-alcoholic fatty liver disease (NAFL)4, the development of non-invasive techniques 

to quantitatively assess acetylcarnitine concentrations in vivo, are of great interest. We previously quantified acetylcarnitine levels by 3T 1H-MRS in skeletal muscle 

of healthy and metabolically compromised individuals5,6. Our results in skeletal muscle clearly support the premise that acetylcarnitine concentrations associate with 

insulin sensitivity. To further unravel the role of acetylcarnitine in the development of metabolic diseases, we sought to develop a 1H-MRS sequence that enables the 

study of this metabolite in the liver. Reliable detection of acetylcarnitine by MRS techniques is hampered by overlapping broad lipid resonances, Our previously 

developed editing sequences made use of differences in spin-lattice (T1) and transversal (T2) relaxation times between acetylcarnitine and lipids5,6. The most effective 

lipid suppression was obtained by a subtraction-based T1 editing approach with a long TE of 350ms6. However, as the liver moves with respiration, such a subtraction-

based method is sensitive to motion-induced artifacts and therefore infeasible. Here, we propose a single-shot approach with dual water/lipid suppression based on 

the variable pulse power and optimized relaxation delays (VAPOR) scheme.  

 

Methods: The VAPOR scheme is originally designed to only suppress water7. The advantage of the VAPOR sequence is its relative insensitivity to inhomogeneities 

in transmit B1 field of the RF coil and variations in T1. The original sequence consists of eight frequency-selective RF pulses of which the timing and flip angles were 

optimized to null a large range of water T1
7. To get dual water and lipid suppression, two of the RF pulses were exchanged for inversion pulses (BW75Hz) of which 

the frequency was set at 2.13ppm (acetylcarnitine region). The timing of the two inversion pulses and the timing and relative flip angles of the remaining six VAPOR 

pulses were optimized through computer simulations in MATLAB (MATLAB 2018b, The MathWorks,Inc.). The voxel used was 40mm x 20mm x 60mm. All spectra 

were acquired with a TR of 7500 ms, TE of 266ms, number of acquired data points of 2048, and number of averages (NSA) of 16. The TE equals 2/Jα-carbonyl and was 

chosen to refocus J-coupling of α-carbonyl, the resonance closest to acetylcarnitine. The optimized sequence with the simulations are depicted in figure 1. To test 

the MRS sequence, we acquired 1H-MRS spectra (Achieva 3T MRI, Philips Health Care) of phantoms with 10% intralipid (a soybean oil emulsion (Fresenius Kabi)) 

in physiological salt including 0mM, 2mM, or 5mM of acetylcarnitine (Sigma Aldrich) and 2% agar (Invitrogen). A regular PRESS with a TE of 266ms and without 

water and lipid suppression was acquired to use the unsuppressed water signal as an internal reference. To assess the performance of our newly developed sequence 

(iVAPOR) in comparison to the formerly established sequences for the muscle, we also acquired spectra with the subtraction-based T1 editing sequence with a TE of 

350ms6. All obtained spectra were post-processed in a custom-written MATLAB script as previously described8. Acetylcarnitine content was calculated after T2 

correction relative to the unsuppressed water resonance. 

 

Results: The PRESS spectrum of the phantom with 10% intralipid and 5mM acetylcarnitine (figure 2a) clearly demonstrates the broad lipid resonances that overlap 

the acetylcarnitine resonance when no lipid suppression is applied. The acetylcarnitine peaks could be revealed in the phantoms containing 2mM and 5mM 

acetylcarnitine by supressing the lipid resonances using either the subtraction-based T1 editing sequence (figure 2b) or the iVAPOR sequence (figure 2c). Due to the 

lower TE of the iVAPOR sequence, the signal intensity of the acetylcarnitine peak was higher (figure 2c) when compared with the acetylcarnitine peak obtained with 

the subtraction-based T1 editing sequence (figure 2b). Integration of the peaks resulted in comparable values when corrected for T2 decay, indicating that both methods 

work effectively. Measured acetylcarnitine levels by the iVAPOR sequence strongly correlated with the known phantom concentrations. 

 

Discussion and conclusion: Our iVAPOR approach allows the detection of acetylcarnitine in a single-shot, circumventing subtraction artefacts associated with our 

previously developed T1 editing sequence6. The use of inversion pulses makes the iVAPOR approach intrinsically more sensitive to variations in T1 relaxation times, 

though the absence of a subtraction scheme and a higher signal intensity make this sequence more suitable for detection in tissues susceptible to respiratory motion, 

such as the liver. Future studies should focus on reproducibility measurements and in vivo validation steps in the muscle and liver.  
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Figure 1.  

 

 

  

 

 
Figure 1: iVAPOR sequence with six water suppression pulses 
and 2 inversion pulses at the acetylcarnitine resonance. 

Calculated time dependence of the water, lipid and 

acetylcarnitine resonances for three different values of the flip 

angle (different B1 of the RF coil (β))(90°(red), 60° (black), 
130°(blue)). Optimized time delays t1= 100 ms, t2= 100 ms, t3= 

43 ms, t4= 67 ms, t5= 43 ms, t6= 164 ms, t7= 43 ms, t8= 48 ms.  

 

Figure 2: Spectra obtained in phantoms containing 10% intralipid and 0mM (red), 2mM (green), or 5mM (blue) acetylcarnitine. a) PRESS 
sequence with a TE of 266ms of a phantom with 10% intralipid and 5mM acetylcarnitine. b) Subtraction-based T1 editing sequence with a 

TE of 350ms. c) iVAPOR sequence with a TE of 266ms 
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Synopsis: Inferring dynamical information from (bio)mechanical systems at a high temporal resolution can be very valuable for cardiovascular or musculoskeletal applications. Spectro-dynamic MRI is a 
recently proposed method that combines a measurement model and a dynamical model to characterize dynamical systems directly from k-space data. Both the displacement fields and the underlying 

dynamical parameters are estimated. In this work, different sampling trajectories and acquisition orderings are used to investigate the trade-off between temporal resolution and k-space coverage. A 

phantom experiment shows that it is possible to reconstruct a moving image from the estimated dynamics at a temporal resolution of 4.4 ms. 

 

Introduction: The human body can be seen as an aggregate of dynamical systems (e.g. the cardiac and musculoskeletal systems). 3D dynamic information about these systems is important for scientific 

and diagnostic purposes1,2, but acquiring this data at high spatial and temporal resolutions is extremely challenging.  

We have developed spectro-dynamic MRI3 as a method to estimate time-resolved dynamic information directly from k-space data. Using a particular repeating sampling strategy, the motion fields and the 

underlying mechanical parameters can be reconstructed from highly undersampled k-space data. 

In this work, we investigate several sampling patterns for spectro-dynamic MRI. A rigidly moving object was simulated with different sampling patterns and data orderings. The displacement fields and 

dynamic system parameters (the natural frequency) were estimated. Furthermore, we reconstructed time-resolved images of a phantom from the motion-corrupted k-space data at a temporal resolution of 

4.4 ms.  

Theory: Assuming conservation of magnetization, a measurement model G can be constructed, explicitly describing the impact of motion on the MR signal. G contains spatial and temporal derivatives of 

the steady-state magnetization m(r,t) and the displacement field u(r,t)3: 

𝐺(𝐮,𝑚, 𝐫, 𝑡) =
∂

∂𝑡
𝑚(𝐫, 𝑡) + ∇𝑚(𝐫, 𝑡) ⋅

∂

∂𝑡
𝐮(𝐫, 𝑡) +𝑚(𝐫, 𝑡) [∇ ⋅

∂

∂𝑡
𝐮(𝐫, 𝑡)] = 0. 

To evaluate the temporal derivatives, finite difference schemes can be used, but the accuracy depends on the time difference Δt between two successive measurements at the same coordinates. Acquiring 

fully sampled 3D images within a few milliseconds is impossible, but repeated sampling of the same k-space point can be done within that time frame. By transforming G to the spectral domain (k-space), 

we obtain the measurement model in terms of the measured k-space data M(k,t) and the Fourier transform of the displacement field U(k,t): 

𝐺(𝐔,𝑀, 𝐤, 𝑡) =
∂

∂𝑡
𝑀(𝐤, 𝑡) + 𝑖2π∑𝑘𝑗

𝑑

𝑗=1

𝑀(𝐤, 𝑡) ∗
∂

∂𝑡
𝑈𝑗(𝐤, 𝑡) + 𝑖2π∑𝑀(𝐤, 𝑡)

𝑑

𝑗=1

∗ 𝑘𝑗
∂

∂𝑡
𝑈𝑗(𝐤, 𝑡) = 0, 

with summations over the d spatial dimensions (2 in our experiments). To allow for heavily undersampled data, a dynamical model F is added, describing the dynamics of the underlying system. As a 

simple test scenario, we use a spherical pendulum: 

𝐹(𝐮, 𝜽, 𝑡) =
𝑑2

𝑑𝑡2
𝐮(𝑡) + 𝜔2𝐮(𝑡) = 0. 

F is parameterized by the displacement field, which is spatially independent in this example, and a set of dynamical parameters θ, in this case the natural frequency ω = √𝑔/𝑙 of the pendulum.  

By solving a single optimization problem, the displacement field u and the dynamical parameters θ can be estimated simultaneously: 

min
𝐮,𝜽

|𝐺(𝐮,𝑀, 𝐤, 𝑡)|2
2 + 𝜆|𝐹(𝐮, 𝜽, 𝑡)|2

2. 

Methods: Simulation: A spherical pendulum with rigid harmonic oscillatory motion in both the x- and y-directions and friction was simulated. The friction was not included in the reconstruction to study 

the effect of model imperfections. 

Cartesian, Radial and Spiral sampling trajectories were considered to investigate the trade-off between the temporal resolution Δt and the k-space coverage per time point (Fig. Error! Reference source 

not found.(a)). Furthermore, each trajectory was simulated with three different orderings (Fig. Error! Reference source not found.(b)): Repeated (Δ𝑡 = 𝑇𝑅), interleaved (Δ𝑡 = 3 ⋅ 𝑇𝑅) and linear (Δ𝑡 =
𝑁 ⋅ 𝑇𝑅), with a TR of 4.4 ms. The repeated ordering has the highest temporal resolution, at the cost of less k-space coverage per time point. We used 𝑁 = 12, which is too low to reconstruct images at a 

useful spatial resolution (as shown by the artifacts in Fig. Error! Reference source not found.), but sufficient to estimate dynamic information. 

The estimated displacements were compared to the ground truth values using the root mean square error (RMSE).  

Phantom: A spherical pendulum made from Lego (Fig. Error! Reference source not found.) with a gel-filled tube was used to acquire MR data with a 1.5T MRI scanner (Ingenia, Philips Healthcare). A 

2D coronal spoiled gradient echo (SPGR) scan with a repeated Cartesian trajectory was used (𝑇𝑅/𝑇𝐸 = 4.4/2.1 ms, 𝐹𝐴 = 9∘). Time-resolved images were reconstructed by correcting the k-space data 

with the estimated displacements. 

Results: Simulation: The estimated displacements (Fig. Error! Reference source not found.) for the linear ordering show an error at the start of each experiment, where the amplitude and velocity are 
highest. The radial repeated pattern fails, since the measurements lack dynamic information in the direction perpendicular to the readout direction. This does not occur for spiral trajectories, and for 

Cartesian patterns it only occurs for the line through the center of k-space. 

The Cartesian trajectory has the lowest RMSEx
 (Table Error! Reference source not found.), but results in a slightly larger error in the phase encode direction. For all trajectories, the interleaved ordering 

results in the highest accuracy.  

Phantom: Fig. Error! Reference source not found. shows the reconstructed images of the moving phantom at one point in time. The undersampling in the phase encode direction causes artifacts. Since 

the repeated ordering was used, the temporal resolution is equal to the TR (4.4 ms). 

Discussion: The RMSE values show that interleaved acquisitions result in the highest accuracy. Furthermore, unlike Cartesian trajectories, non-Cartesian trajectories do not suffer from systematically lower 

accuracy in the phase encode direction. 

In the future, we would like to explore joint estimation of the dynamics and image reconstruction, and extend spectro-dynamic MRI to non-rigid motion and 3D acquisitions. In order to model more 

complex in-vivo systems, techniques employed in data-driven discovery of dynamical systems4–6 could be leveraged to provide dynamical models with reduced complexity from measured data. 

Conclusion: We have extended the spectro-dynamic MRI framework to more flexible sampling strategies. An interleaved ordering showed the highest accuracy. The displacement fields and the dynamical 
parameters could be estimated from k-space data, in simulation and in a phantom experiment. Moving images could be reconstructed from the data and the estimated displacements. These results can be 

used in further developments of spectro-dynamic MRI toward in-vivo applications. 
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Figure 1: (a) Cartesian (top), radial (middle) and spiral (bottom) sampling trajectories. (b) 
Schematic representations of the repeated (top), interleaved (middle) and linear (bottom) 

sampling orderings. Each colored square represents one readout. The repeated ordering samples 

the same readout multiple times (3 times in this simple schematic, typically dozens of times in 
practice), while the linear ordering samples all N readouts (12 in our experiments) before 

repeating. The interleaved ordering is a hybrid between the other two orderings. 

 

 

Figure 3: Estimated and ground truth x- and y-displacements for each sampling pattern. The 

reconstruction for the repeated radial pattern fails since a single radial spoke that crosses the 

center of k-space does not encode motion perpendicular to the readout direction. The linear 
ordering has a reduced accuracy for all trajectories (see the errors at the red arrows), as the Δt 

becomes too large for accurate finite differences.  

 

Figure 4: (a) Estimated displacements of the spherical pendulum. (b) Reconstructed image at one 

point in time. The vertical line in (a) indicates the time of the current image. For each time point, 

all readout lines were corrected to the estimated position as shown in (a), followed by a Fast 
Fourier transform. The artifacts in the phase encode (vertical) direction are caused by the high 

undersampling in that direction, while the temporal resolution is equal to the TR (4.4 ms). 

 

 

 

 

Figure 2: (a) Schematic overview of a spherical pendulum with length l, mass m, and 

gravitational acceleration g. The pendulum is able to swing in the x- and y-directions, and its tip 
traces the shape of an ellipse. (b) Experimental setup of the spherical pendulum, with a tube at 

the end of the pendulum generating MR contrast.  

 

 

 

Table 1: RMSE of the estimated displacements in both directions compared to the ground truth, 

and the estimated frequencies of the dynamical system. The true frequency during simulation 

was 5.72 rad/s. Bold values indicate the estimations with the smallest error (the estimated 
frequency for the Cartesian interleaved pattern was slightly more accurate than for the spiral 

interleaved pattern). The interleaved ordering has the highest accuracy for all trajectories. Also 

note that the Cartesian trajectory systematically performs worse in the phase encode (y) 

direction.
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Synopsis: Pompe disease is caused by an abnormal accumulation of glycogen in the lysosomes of multiple tissues including the brain due to a deficit in acid α-glucosidase (GAA). 

The development of enzyme replacement therapy with recombinant human GAA (rhGAA) has dramatically improved patients’ survival, however, rhGAA does not reach the brain 

which remains untreated. Consequently, classic-infantile Pompe patients may develop progressive white matter lesions and cognitive problems. Here, we used single-voxel 1H MRS 

and spectroscopic imaging and found an accumulation of  glycogen and significant decrease in total-N-acetyl-aspartate in the brain of classic-infantile patients (n=3) when compared 

to age-matched healthy controls (n=3). 

 

Introduction:  

Glycogen storage disease type II, also known as Pompe disease, is a rare autosomal recessive disorder caused by a deficit in the lysosomal glycogen degradation enzyme, acid α-

glucosidase (GAA)1. Classic-infantile Pompe patients are the most affected and do not reach the age of one year, if untreated. Enzyme replacement therapy with recombinant human 

acid α-glucosidase (rhGAA) has dramatically improved patient survival2. rhGAA, however, does not cross the blood-brain-barrier (BBB) and thus the brain remains unaffected by the 

treatment. As classic-infantile patients get older, a new phenotype appears, showing hampering or even decline of cognitive development3,4. Conventional brain imaging has shown 

white matter (WM) lesions in the brain of classic-infantile patients, which progressively spread with increasing age3,4. Post-mortem studies in Pompe disease demonstrated that glycogen 

accumulates in lysosomes within neurons of the cerebral cortex, brainstem, and spinal cord and in glial cells of the WM and the cerebral cortex5. This suggests that cell-specific 

neurochemical profile might be affected in Pompe disease. Here, we investigated the potential of single-voxel 1H MRS (SVS) and spectroscopic imaging (MRSI) at 7T to provide a 

non-invasive readout of glycogen accumulation and other metabolic alterations in the brain of classic-infantile Pompe patients. 

 

Materials and methods: 

Subjects: Three classic-infantile patients (9, 14, and 16yo) and three age-matched healthy controls participated in this study so far. Patient diagnosis was confirmed by enzyme activity 

assays and mutation analysis in the first 6 months after birth, and patients were treated with a dose of rhGAA of 40mg/kg/week at the time of the MRI/MRS scans. Patient characteristics 

and longitudinal neuropsychological evaluations are given in Fig.1. MRI performed at 3T showed that all patients already presented abnormal WM lesions one year before our study. 

Study protocols were approved by the institutional review board and written informed consent was obtained. 

MR setup: Experiments were conducted on a 7T whole-body MRI scanner (Philips Healthcare, The Netherlands) equipped with a volume transmit/32-channel receive head coil (Nova 

Medical, USA).  

In vivo MR protocol and post-processing: A 3D-T1W gradient-echo (TR/TE=5.5/2.5ms, resolution 1x1x1mm3) and a multi-slice multi-echo (TR/TE1/TE2=4385/27/100ms, resolution 

1.3x1.3x4mm3) acquisitions were performed and used for positioning of the volume-of-interest (VOI). SVS data were acquired using a sLASER sequence (TR/TE=6500/34ms, NSA=32, 

acq. time~5min) from a 18x18x18mm3 VOI positioned in the left frontal periventricular WM region (Fig.2B). For 2D-MRSI acquisition, volume pre-selection was performed using 

sLASER (TR/TE=5000/36-38ms, volume dimensions (AP,RL,FH)=130x90x10mm3). Spatio-spectral encoding for the spectroscopic imaging was done using a concentric rings readout 

trajectory6 (FOV (AP,RL)=240x240mm2, voxel size=10x10mm2, slice thickness (FH)=10mm, acq. time~11min). FOCI refocusing pulses were used both for SVS and 2D-MRSI 

acquisitions to minimize in-plane chemical shift displacement errors Outer-volume-suppression targeting lipid signal was performed using ten saturation bands interleaved with the 

water suppression  and positioned circularly around the selected volume. SVS and 2D-MRSI data were reconstructed using in-house Matlab routines7 and spectra were fitted with 

LCModel8 with respective basis-sets. 

Glycogen phantom: A 28mM glycogen solution was prepared by mixing glycogen from rabbit liver (Sigma) with water. Data were acquired using same protocol as for SVS in vivo 

acquisition. The spectrum was corrected for frequency-drift and the residual water peak was removed with a linear prediction singular value decomposition Matlab-based routine. The 

resulting glycogen spectrum was added to the LCModel basis-sets to fit glycogen signal in vivo.     

Statistical analysis: Statistical significance was tested using an unpaired Student’s t-test with Welch’s correction and assuming unequal variance (*p< 0.05, **p< 0.01, ***p < 0.001, 

GraphPad Software, USA). 
 

Results and discussion: 

As illustrated in Fig.1&2, Pompe patients presented a decline in total intelligence and performance test scores, and showed widespread WM lesions on conventional T2-weighted images 

at time of the MRI. This is in agreement with previous reports3,4. Fig.3A shows SVS data acquired in Pompe patients (panels A/C) and healthy controls (panels B/D). A clear shift in 

the neurochemical profile is observed in all three patients, particularly, a large increase in signal between 3.5-4ppm attributed to glycogen, in agreement with expected glycogen 

accumulation in the brain of Pompe patients. The significant increase in glycogen was observed in combination with a significant increase in myo-inositol (Ins) and decrease in tNAA 

(NAA+NAAG) in patients compared to healthy controls (Fig.3B). As the signal of glycogen and Ins partially overlap at 3.6ppm (Fig.3A), quantification of Ins in patients is possibly 

compromised. The decrease in tNAA reflects neuronal damage in WM lesions and corroborates previous reports9. MRSI results were in line with the SVS data and showed a significant 

presence of glycogen as well as a significant lower level of tNAA across the slice in patients (Fig.4). On the T2-weighted images, WM in the patients showed large hyperintense areas, 

possibly reflecting tissue damage associated with the glycogen accumulation seen on the MRSI.  
 

Conclusion: 
We illustrated the potential of MRS, both in SVS and in 2D-MRSI mode, to monitor the accumulation of glycogen in the brain of Pompe patients. As innovative treatment strategies 

which target both muscles and the brain are currently under development, MRS(I) could serve as a non-invasive readout to monitor disease progression and response to treatment. In 

addition, as neurochemical changes often precede macrostructural damages, MRS(I) might serve as an early biomarker for the effect of Pompe disease on the brain. 
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Figure 1. (A) Patients characteristics. All ages are stated in years (y), months (m) and days (d). CRIM: cross-reactive immunological material; P: positive; N: negative. (B) 

Results from neuropsychological evaluations over time showing total intelligence (left), verbal intelligence (middle) and performance intelligence (right) test scores for the 

three patients. P1: patient 1 (blue); P2: patient 2 (green); P3: patient 3 (pink). 

Figure 3. (A) Single-voxel MRS data 

acquired in all Pompe patients and age-

matched healthy controls showed a 

significant alteration in the 

neurochemical profile in Pompe disease. 

(B) Quantification of metabolites ratio to 

tCr, showing a significant increase in 

glycogen signal and decrease in tNAA in 

Pompe patients compared to age-

matched healthy controls. 

 

A 

B 

A B 

Figure 2. (A) T2-weighted images of Pompe patients (top) and age-matched healthy controls 

(bottom), highlighting the widespread WM lesions (arrows) in all three Pompe patients. (B) 

Example of positioning of the VOI for SVS (yellow) and MRSI (red) acquisitions. 

 

A 

B 

Figure 4. (A) Glycogen maps obtained following LCModel fitting for all 

Pompe patients (top) and age-matched healthy controls (bottom). A threshold 

was applied to remove spectra with low SNR quality or large lipid 

contamination and (B) Example of MRSI data from a Pompe patient (P3, top) 

and healthy control (HC3, bottom). (C) Quantification of glycogen and tNAA 

(all voxels from all Patients vs. healthy controls), showing glycogen 

accumulation and a large decrease in tNAA in Pompe patients when compared 

to healthy controls. 
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Synopsis: 31P MRS can be used in liver disease diagnosis and treatment monitoring. However, 31P MRS has a low intrinsic sensitivity and the concentrations of liver 
31P metabolites are in the low millimolar range. Ultra-high field (≥7T) MRI and new developments in RF coil design can mitigate the low SNR, but additionally 

advanced reconstruction strategies including denoising could be used. In this study we show that principal component analysis (PCA)-based denoising of 7T liver 31P 

MRSI data enhances the SNR 3.8-fold, but also slightly changes quantified 31P metabolite concentrations, while not affecting the test-retest reliability with the used 

fitting prior knowledge. 

 

Introduction: Phosphorus magnetic resonance spectroscopy (31P MRS) is a non-invasive technique allowing assessment of hepatic energy metabolism and membrane 

turnover1,2, which could potentially be used in liver disease diagnosis and treatment monitoring3–6. However, 31P has a low gyromagnetic ratio and thus low intrinsic 

sensitivity, and in-vivo concentrations of potentially observable 31P metabolites in the liver are only in the range of 0.7-2.7mM7. Ultra-high field strength (≥7T) MRI 

scanners and an integrated 31P whole-body transmit coil8 in combination with a multi-channel 31P receive array improve the sensitivity of whole-liver 31P MR 

spectroscopic imaging (MRSI). In addition to these hardware developments, improvements can also be achieved during reconstruction of the 31P MRSI data, for 

example by using principal component analysis (PCA)-based denoising to enhance the SNR9. However, it is unclear whether denoising benefits 31P MRSI data 

quantification. In this study, we investigated the effect of applying PCA-denoising before or after channel combination on the quantification of test-retest, 16-channel 

whole-liver 31P MRSI data from healthy subjects and the derived repeatability parameters. 

Methods: Ten healthy volunteers (four females and six males, age 34±12 (range: 25-62) years, BMI 24±4.0kg/m2) were scanned twice in supine position using a 

whole-body 7T MR system (Philips Healthcare, Best, NL) with an in-house designed 31P whole-body birdcage transmit coil (diameter 60cm, 120.6MHz8). 31P signals 

were received with a local body array, containing 16 31P loop coils integrated with 8 fractionated 1H dipole antennas10,11. Image-based B0 shimming was performed 

and transversal and coronal T1-weighted images were acquired. 31P spectra were acquired with a pulse-acquire sequence with a block pulse (carrier frequency set to 

phosphocreatine, B1=6T), followed by phase encoding gradients for 3D spatial encoding. Acquisitions were made with Hamming weighted k-space sampling without 

respiratory gating. The following parameters were used: FOV=500(LR)×280(AP)×360(FH)mm3, nominal resolution=20mm isotropic, TR=60ms, TE=0.56ms, 

FA=12°, BW=5000Hz, NSA=20, acquisition time=22:37min. A full liver mask was manually drawn on the transversal T1-weighted images. 31P MRSI data were 

reconstructed in Matlab (The Mathworks Inc., Natick, MA) and metabolites were fitted with AMARES12 using OXSA13,14. Three reconstruction strategies were 

compared with each other: 1) Roemer channel combination without denoising (ND-Roemer), 2) PCA-denoising applied before Roemer channel combination (D-

Roemer) and 3) PCA-denoising applied after Roemer channel combination (Roemer-D). Signals from α-, β-, and γ-ATP, inorganic phosphate (Pi), 

glycerophosphocholine (GPC), glycerophosphoethanolamine (GPE), phosphocholine (PC), phosphoethanolamine (PE), nicotinamide adenine dinucleotide (NADH), 

uridine diphosphate glucose (UDPG), phosphatidylcholine (PtdC), and phosphocreatine (PCr) were fitted with Lorentzian line shapes with equal line widths, with 

soft constraints for the chemical shifts and fixed J-couplings for the ATP doublets and triplets. Only voxels in the liver mask with a fitted PCr amplitude smaller than 

the α-ATP amplitude (to filter out muscle-contaminated voxels) based on the ND-Roemer reconstruction were taken into account for the statistical analyses. Signal 

amplitudes were expressed as percentage of the sum of all fitted signals and results were averaged over all selected voxels. One-way ANOVA for repeated measures 

with Bonferroni post-hoc analyses was performed to assess significant differences in SNR (based on α-ATP) and metabolite signal amplitudes between the three 

reconstruction methods. Next to this, for each reconstruction method repeatability was assessed from Bland-Altman analyses (coefficients of repeatability (CR) and 

bias), within-subject coefficients of variation (CoV)15, and intraclass correlation coefficients (ICC). Significant differences in the repeatability parameters for the 

different metabolites (excluding β-ATP and PCr) among the three reconstruction methods were assessed with a one-way ANOVA for repeated measures with 

Bonferroni post-hoc analyses. Statistical significance was set at p<0.05. 

Results: On average 140±32 voxels per subject were used for quantification of liver 31P metabolites. An illustration of the 31P MRSI grid is shown in Figure 1, 

together with 31P MR spectra from one selected voxel reconstructed with ND-Roemer, D-Roemer and Roemer-D. AMARES fitting results for the different 

reconstructions are shown in Figure 2. PCA-denoising in both D-Roemer and Roemer-D reconstructions significantly increased the SNR of the 31P MR spectra 

compared to ND-Roemer (Figure 3). In addition, the average SNR for D-Roemer was higher than for Roemer-D, but this difference was only significant for the 

second scan. Quantified metabolite levels were very similar among the three methods, but the small (absolute) differences were nevertheless significant for almost 

all metabolites and between all methods (Figure 4). However, no significant differences were found for the repeatability parameters among the three reconstruction 

methods (Figure 5). 

Discussion and conclusion: PCA-denoising significantly increases the SNR of 31P MRSI data and denoising before channel combination seems to enhance the SNR 

more than denoising after channel combination (3.8-fold vs 3.0-fold). In addition, PCA-denoising significantly affects quantified metabolites levels as determined by 

AMARES fitting, although the actual (absolute) differences are small. It is impossible to determine which results are most accurate, as there is no ground truth, but 

simulated data could help to resolve this9. Importantly, we found no significant differences between the repeatability parameters among the different reconstruction 

methods, indicating that PCA-denoising does not improve the test-retest reliability for the quantification of 31P metabolites from our liver 31P MRSI data with the 

used fitting constraints. Effects of PCA-denoising on data quantification with less prior knowledge or of data with lower SNR remain to be investigated. 
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Figure 1: One slice of a transversal T1-weighted MRI scan of subject 1 

overlaid with the 31P MRSI grid. 31P MR spectra of one voxel in the liver are 

shown reconstructed with 1) Roemer channel combination without PCA-

denoising (ND-Roemer) (left), 2) PCA-denoising before channel 

combination (D-Roemer) (middle) and 3) PCA-denoising after channel 

combination (Roemer-D) (right). No apodization was applied. 

 

Figure 2: 31P MR spectra of one voxel in the liver of scan 1 from subject 1 

(first column) together with AMARES fit results (middle column) and 

residuals (last column) for the three different reconstruction methods. 

Figure 3: SNR for the α-ATP signal for each scan for the ten different 

volunteers (V), averaged over all selected voxels within the liver mask, for 

ND-Roemer (no PCA-denoising), D-Roemer (PCA-denoising before channel 

combination) and Roemer-D (PCA-denoising after channel combination). 

SD’s are given between parentheses. * p < 0.05 vs. ND-Roemer of the same 

scan; § p < 0.05 vs. D-Roemer of the same scan. 

Figure 4: Fitted signal amplitudes for each metabolite, averaged over all 

volunteers, using ND-Roemer (no PCA-denoising), D-Roemer (PCA-

denoising before channel combination) and Roemer-D (PCA-denoising after 

channel combination). SD’s are given between parentheses. * p < 0.05 vs. ND-

Roemer of the same scan; § p < 0.05 vs. D-Roemer of the same scan. 

 

Figure 5: Repeatability parameters for 31P metabolite levels determined from 

the two scans in the ten volunteers, averaged over all metabolites except β-

ATP and PCr, using ND-Roemer (no PCA-denoising), D-Roemer (PCA-

denoising before channel combination) and Roemer-D (PCA-denoising after 

channel combination). SD’s are given between parentheses. There were no 

significant differences among the three methods. 
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Synopsis: T2* weighted images were obtained in post-mortem brains of wild-type and two transgenic mouse strains. The transgenic mice develop cerebral amyloid 

angiopathy (CAA) during their lifetime. MR imaging was used to observe developmental changes and the occurrence of amyloid beta plaque formation and/or 

bleedings in the brain as a result of age and condition (pre or post middle cerebral artery occlusion and with or without CAA). It is hypothesized that the presence of 

stroke increases plaque incidence and vice versa. Results show an increase in hypointensities in mice brains developing CAA. This might be caused by plaque 

formation or by microbleeds. Morphological differences of the hippocampus become apparent in the aging APP23 mice compared to wild-type. Effects of stroke on 

the incidence of hypointensities in the brains still have to be determined. 

 

Introduction 

Alzheimer’s Disease (AD) is characterized by amyloid β (Aβ) depositions that trigger neuronal dysfunction and cell death. Aβ accumulates inside neuronal cells as 

well as extracellularly, where it aggregates into plaques. Plaques can be found in the brain parenchyma and in cerebral blood vessels, where it is known as cerebral 

amyloid angiopathy (CAA), which causes vascular degeneration and neuroinflammation [1] [2]. Despite increasing insights in the pathophysiology of AD, the 

spatiotemporal development of parenchymal and vascular pathology in AD remains incompletely characterized. Therefore, we applied whole-brain high-resolution 

MRI to assess development of microbleeds and/or plaques in APP23 mice, a widely used mouse model for evaluating vascular changes during amyloid deposition, 

at different ages. Since an interaction between the occurrence of stroke and the (increased) development of CAA is suspected, identical experiments were also 

performed in another transgenice mice model of Alzheimer’s, TgSwDI mice, before and after stroke at 8 months of age. Comparison of the described groups of 

mice with different pathologies will lead to more information on possible interactions between the spatio-temporal development of plaques and/or microbleeds and 

stroke.  

Materials & Methods 

APP23, TgSwDI and wild-type mice were euthanized at different ages and brains were perfusion-fixed with PFA. After two weeks all tissue outside the skull was 

removed, however, the brains were left in the skull to prevent deformations. Brains were then soaked in PBS for at least a week before the MR experiments. Three 

brains were scanned together during a MRI session in a 9.4 T Varian MR scanner with gradients up to 1000 mT/m and a three-turn solenoid coil of 2 cm diameter. 

At least two MR volumes were obtained : one using a balanced ssfp acquisition (TR/TE 15.4/7.708 ms,FOV 19.7*18*19.7 mm3 262*240*263 points, coronal 90, 

isotropic spatial resolution of 75 um, flip angle 40°,6 averages at each of 4 phase-shifts (0°90°180°270°), acquisition duration of 6.5 hrs) and another one using a 

3D multi gradient echo acquisition (TR/TE/TE2 100/3.2/4.3 ms, 22 echoes ,FOV 19.7*18*19.7 mm3 262*240*263 points, coronal 90,  isotropic spatial resolution 

of 75 um, flip angle 25°,8 averages , acquisition duration of 14 hrs). The BSSFP images were linearly and non-linearly registered to an average mouse brain using 

FLIRT and FNIRT (FMRIB’s software library [3] [4]). T2* weighted images were summed to give a single high SNR image which was linearly registered to the 

BSSFP image for each mouse. Non-linear registration to any average image was performed by applying the registration of the BSSFP image. For each timepoint an 

average brain image was generated using the wild-type animals at that age. The transgenic mouse brains were registered to the average mouse brains of their age 

group. This made the generation of average mouse brain images per age group possible for the APP23 mice. Images were normalized by setting the median image 

intensity in the cortex of the mice to one. The individual transgenic mouse brains were also compared to the average wild-type brains. In the summed T2*-weighted 

data each pixel was checked with the corresponding pixel in the average image obtained from the wild-type mice. Each pixel with a signal intensity lower than the 

average signal intensity + 2.5 times the standard deviation of the intensity of that pixel in the corresponding wild-type volumes was denoted as a plaque/microbleed 

pixel. The number of such pixels was quantified for each group. The processing pipeline for the mice with stroke (induced by transient occlusion of the middle 

cerebral artery) was more or less identical. However, in this case the stroke lesion was sometimes so large that the registration suffered in the ipsilesional part of the 

brain. Therefore comparisons were only made in ROIs in the contralesional hemisphere.  

Results & Discussion 

As compared to wild-type control brains, APP23 brains appeared more granular-like on the anatomical bSSFP scans starting at ~15 months of age. Focal 

hypointensities were detected in the summed T2*-weighted images of APP23 brains from an age of 15 months onwards (see figure 1). A lower degree of contrast in 

the hippocampus of APP23 mice was observed starting at 15-18 months of age (figure 2). T2* maps revealed plaques/microbleeds in APP23 mice, which were less 

frequent in wild-type brains, starting at 7 months of age. In TgSwDI mice at ages of 8 or 12 months, plaques/microbleeds were less prominent (see figure 3). Stroke 

lesions distorted the images too much to reliably count low intensity pixels.   

Conclusion 

Our data reveal the occurrence of morphological changes in the hippocampus at a relatively early stage in APP23 mice, before the formation of microbleeds or 

plaques. Quantitative analysis of high-resolution MRI data may provide important insights into the progression of markers that inform on the development of AD. 

The effect of stroke on the occurrence of plaques or microbleeds is currently being investigated.  

References: 1.Ballard, C., et al., Alzheimer's disease. Lancet, 2011. 377(9770): p. 1019-31.   2. Miao, J., et al., Cerebral microvascular amyloid beta protein 
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protein. Am J Pathol, 2005. 167(2): p. 505-15.   3.Smith, S.M., et al., Advances in functional and structural MR image analysis and implementation as 

FSL. Neuroimage, 2004. 23 Suppl 1: p. S208-19.   4. Jenkinson, M., et al., Fsl. Neuroimage, 2012. 62(2): p. 782-90. 
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Figure 1. Median images of wild-type and APP23 mouse brains at different ages. Increased occurrence of hypointensities can be observed in the cortex of the APP23 mice. 

 

Figure 2. Median images of wild-type (top) and APP23 (bottom) hippocampal region. Note changes in the pattern within the hippocampus.  

 

Figure 3. Summed T2*-weighted saggital and coronal slices from individual animals after linear registration (non-linear registration deforms the images too much in the case of stroke). Note the absence of  

low intensity spots in the wild-type and TgSwDI animals, while stroke lesions can be clearly observed. 
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Synopsis: Automatic passive marker detection is required for continuous device tracking during MRI-guided endovascular interventions. This study elaborates marker detection performance of a deep 
learning-based model in GRE images in a pulsatile flow phantom at 3T and its robustness to alterations in imaging parameters and marker concentrations. The model correctly detected on average 4.1±1.1 

out of 5 markers. The performance was highest for images resembling the training dataset and worsened for images with deviating marker appearance, e.g., due to high echo times, marker concentrations or 

adjusted phase-encoding direction. Further model optimization is required to make it more robust and clinically relevant. 

 

Introduction: MRI-guidance offers several advantages during endovascular procedures, such as high soft-tissue contrast, three-dimensional (3D) volume imaging and functional imaging, but endovascular 
device manipulation under real-time MRI still remains complex.1,2 To continuously visualize the moving guidewire through a vascular trajectory, the imaging scan planes need to be aligned and updated. 

Manual plane adjustment in 3D is challenging and time-consuming, hence automation of imaging plane adjustment could facilitate easier device navigation.2 For automatic plane adjustment,  automatic 

marker detection is required. Several studies implemented automatic passive marker detection using traditional digital image processing.1,3,4 Where adjustments in, for example, guidewire or marker design 

may require manual updating of the algorithm in conventional methods, deep learning methods can be easily retrained to adjust to the new marker appearance.   

Therefore, this study evaluated the feasibility of deep learning to automatically detect passive markers during real-time MRI in a pulsatile flow phantom and its robustness to alterations in imaging parameters 

and marker concentrations. 

 

Methods: In previous work5, we have demonstrated that passive iron(II,III)oxide (Fe3O4) marker enhanced guidewires were adequately displayed at 3T MRI (Magnetom Skyra, Siemens, Erlangen, Germany) 

in a pulsatile flow phantom using a near-real time (up to 3.3 frames per second (fps)) gradient echo sequence (GRE). In short, an 8-mm tube was immersed within an agar solution and connected to a heart-
lung machine to generate a realistic pulsatile flow (Figure 1). Four different guidewires (Nano4Imaging GmbH, Düsseldorf, Germany) with each having different iron(II,III)oxide concentration (6.25, 12.5, 

25, and 50mg/mL) markers were imaged using 2D GRE sequence (echo time (TE)/ repetition time (TR): 2.48/4.6ms, framerate: 3.3fps, matrix size: 144x144, flip angle: 12ᴼ, pixel size: 1.74x1.74mm, slice 

orientation: sagittal, phase encoding direction (PED): perpendicular to B0, slice thickness (ST): 5mm), further specified as the baseline image. Imaging was repeated for the different guidewires with alterations 

in imaging parameters and identical guidewires with different marker concentrations (Table 1). 

In the current study, an U-net6 deep learning model was trained to detect markers in the images acquired as described above. Markers were manually annotated and a 2D Gaussian kernel with a variance of 

(1,1) was placed at annotated locations to generate a likelihood map. The train set consisted of thirty baseline GRE images that additionally underwent rotation, translation, scaling and cropping augmentation 

techniques. The validation test consisted of ten images. The detection performance of the trained model was validated using 25 images from the datasets with different parameters. To analyse the performance, 
local maxima were calculated for a range of likelihood thresholds (0.1-0.9 with 0.05 steps). If the distance between annotated and detected marker was two voxels or smaller (3.5mm), the marker was specified 

as correctly detected. Mean number of true positive and false positive detected markers for the different thresholds were calculated and tabulated together with the standard deviation (SD).  

 

Results: The time to analyse one image (inference time) with an Nvidia GTX1080Ti graphics card was approximately 4ms. Figure 2 shows examples of the automatic marker detection using the trained deep 
learning model for the baseline image and the parallel PED image. The performance of the automatic marker detection algorithm for the different image datasets is displayed in Table 2 and Figure 3. The 

overall mean true positive detected markers was 4.1±1.1. The mean number of true positive (4.9±0.2) and false positive (0.0±0.0) detected markers for the images scanned with low TE and with larger slice 

thickness was similar to the baseline images (4.9±0.3). Detection performance decreased for images with larger marker concentrations and high TE, as well as for images with parallel PED. The highest 

marker concentration resulted in the lowest performance, with a mean number of correctly detected markers of 4.1±1.1.  

 

Discussion: This study shows that passive marker artifacts on endovascular guidewires can be adequately detected by a trained deep learning model within approximately 4ms. Detection performance was 

not affected by minor adjustments in TE (<1ms) and doubled slice thickness, however higher marker concentrations, high TE and switched PED most pronouncedly resulted in decreased performance. This 

is to be expected as these parameters directly affect artefact appearance through, amongst others, increased magnetic susceptibility artifacts.7,8 

Our findings provide insight into the robustness of automatic detection models and care should be taken to alter imaging parameters when such techniques are applied clinically. Improved robustness of the 
detection model can likely be realized by training the model with a larger dataset and with MRI images acquired with different parameters. Furthermore, for translation to the clinical setting MRI images of 

the device in humans should be acquired to train the deep learning model. 

Our results appear promising towards designing a fully automated marker detection and real-time imaging protocol. Ideally, such an algorithm should use a bi-directional communication protocol to retrieve 

the real-time image stream, determine marker location and update the ideal imaging scan plane. Ultimately, this may improve usability and facilitate studies on MRI-guided endovascular interventions in 

clinical practice. 

 

Conclusion: Deep learning based automatic marker detection of passive markers in near real-time imaging was feasible. Adjusting parameters such as TE, PED and marker concentration reduced the 

performance of the marker detection.  
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Figure1: Schematic drawing of the guidewire with markers inserted in the flow phantom. 

 

 

Figure 2: Original baseline (A) and parallel PED (D) GRE MRI images with corresponding ground-truth annotations (B) and (E), respectively. (C) and (F) show the probability map generated by the deep 

learning model of the original and parallel PED image, respectively. Note that the marker prediction of the top three markers is less distinct for the parallel PED image compared to the baseline image. 

 

 

Figure 3: Detection performance of the deep learning model displayed by mean correctly detected markers and corresponding standard deviation. Detection performance decreased for larger marker 

concentration, echo time and parallel PED. 
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Background: After ischemic stroke, many patients experience poor recovery of motor function, which is caused by damage to the motor system. Whilst the 

corticospinal tract, the brain’s major motor pathway, is well studied, the role of alternate motor fibers in the rubrospinal tract and reticulospinal tract remains 

incompletely understood1,2. Animal models provide opportunities for in-depth longitudinal investigation of white matter tract conditions in relation to motor 

dysfunction and recovery after stroke. In this project, we aim to elucidate the role of the rubrospinal tract and reticulospinal tract in functional recovery in a novel 

experimental focal stroke model using serial multiparametric in vivo MRI.  

 

Materials and Methods: Unilateral focal stroke in the corticospinal tract of female Long-Evans rats is induced through intracerebral injection of the vasoconstrictive 

agent N5-(1-iminoethyl)-L-ornithine (L-NIO). Combined injection with Gadovist is done to confirm the location of injection with MRI directly after stroke (Fig. 1A). 

In vivo MRI sessions with multiparametric imaging protocol are performed on a preclinical 9.4T MRI scanner to measure changes in the brain in various phases after 

stroke. Diffusion MRI is executed with 220 diffusion-weighted directions, increasingly divided over 5 b-values (0, 600, 1200, 1800, 2400) to enable complex fibre 

orientation estimation3. A batch of behavioural tests is performed to assess functional recovery. 

 

Results: Figure 1 shows examples of preliminary data. A lesion in the internal capsule at day 3 can be detected with T2-weighted MRI. A decrease in fractional 

anisotropy (FA) in surrounding white matter suggests tract degeneration. Signs of injury were not detected in sham rats. 

 

Discussion: The results from this study can provide more information about the role of the rubrospinal and reticulospinal tract in loss and recovery of motor function 

after ischemic stroke. This information may contribute to development of new diagnosis and treatment methods for recovering stroke patients. 
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Imaging white matter changes in alternate motor fibers after experimental focal stroke in rats 
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Figure 1. (A) Focal stroke in the corticospinal tract is achieved by LNIO injection in the internal capsule. Co-injection with Gadovist confirms correct injection from contrast enhancement on a balanced 

steady-state free precession scan. (B) At day 3, stroke-induced damage is apparent from changes in T2 and diffusion measures. 
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Synopsis: This work presents a method for local SAR and B1
+ prediction using only a 9 seconds long localizer as an input. The total procedure can be executed in 

less than 30 seconds for a birdcage configuration and less than 45 seconds for a PTx configuration, which enables seamless integration into the MR workflow. 

 

Introduction: Ultra-high field (UHF) MRI (B0>7T) shows great promise to yield higher resolution structural and physiological information than available at 3T, 

particularly in the brain. Parallel RF transmission (PTx) is a key technology for UHF-MRI to address the increased spatial variations in the radiofrequency (RF) 

field distribution. However, currently it has failed to reach widespread clinical adoption. The main factors include the intersubject variability in local specific 

absorption rate (SAR), which leads to large safety margins to ensure compliance with regulatory limits in all subjects,1,2 and time-consuming B1
+ calibration 

procedures required for tailored RF pulse design. Together, these technological challenges limit the clinical impact of PTx and the utilization of UHF-MRI. 

In this work, we demonstrate a fast subject-specific method based on deep learning and a fast EM solver for predicting both local SAR and B1
+ fields using only a 9 

second long localizer scan. A schematic overview of the approach is shown in Figure 1. 

 

Methods: MR protocol: Data was acquired in 20 healthy volunteers (10 male, 10 female, age range 21-66 years) on a Philips Achieva 7T MRI system equipped 

with a Nova Medical birdcage head coil and integrated 32-channel receive coil array. The imaging protocol consisted of a 3D T1-weighted MP-RAGE sequence 

acquired at 1 mm isotropic resolution in 3 min, followed by a fast 3D T1-weighted  localizer acquired at 2 mm isotropic resolution in 9 s. 

The 1 mm T1-weighted data were first used to generate subject-specific dielectric body models with eight tissue classes using our recently developed deep learning 

segmentation method.3 The resulting material parameter maps (i.e. permittivity, conductivity, density) were subsequently downsampled to 2 mm and used as 

‘ground truth’ data for training the deep learning network with the localizer as input. 

Deep Learning: A 2.5D convolutional neural network was implemented based on the ForkNET topology.4 The network was designed to have one input and 5 

outputs, consisting of the three tissue parameters and additional masks for the background and internal air. The network was implemented using TensorFlow and 

trained in 100 epochs using a mean squared error loss function. To ensure generalizability, the results were tested in a leave-one-out manner, in which the test 

subject was excluded from the training data. 

EM Solver: The B1
+ field and 10g-averaged SAR distribution (SAR10g) in the ground truth and localizer-based body models were simulated using a previously 

developed custom EM solver based on the volume integral equation method.5 The solver employs a numerical Green’s tensor computed via FDTD and includes a 

pre-computed coil response library to account for the loading of the RF coil. Incident fields for a quadrature birdcage as well as a PTx loop array were simulated 

using FDTD (XF7.4, Remcom inc., State College, PA) and the method was implemented in Matlab (2021a, Mathworks inc., Natick, MA) facilitating parallel 

computing and GPU acceleration through an Nvidia K40 GPU. Channelwise E-fields were combined to construct Q-matrices, averaged over 10 g and processed 

into a SAR oracle format to facilitate efficient SAR evaluation.6,7 

 

Results: Training of the deep learning network took approximately 160 min and final inference took approximately 1s to evaluate per subject. A comparison 

between ground truth and localizer-based dielectric body models is shown in Figure 2. 

Figure 3 shows a convergence analysis of the EM solver with respect to discretization step size, evaluated in the birdcage configuration. The peak local SAR error 

drops below ~1% on average for spatial resolutions of 4.0 mm and higher, which strikes an appropriate balance with an average computation time of 12s. In the 

eight-channel PTx configuration, the average computation time was 32s, including parallel computing overhead. 

Quadrature birdcage simulations in five of the ground truth and localizer-based body models are shown in Figure 4. Overall, peak SAR10g values obtained in the 

network generated body models are within 5% of those obtained in the ground truth body models. 

Peak SAR10g predictions in 1000 random PTx excitations were evaluated against those obtained in the corresponding ground truth body models, summarized in 

Figure 5. The average peak SAR10g overestimation in the localizer-based models was 2.2% and an additional 6.3% safety margin would be required to ensure 

conservative local SAR estimate in 95% of the cases. This is a considerable improvement compared to the average overestimation of 45.2% that would be obtained 

by accounting for the worst-case local SAR within the current dataset. 

 

Discussion and Conclusion: This work presents a method for local SAR and B1
+ prediction using only a short localizer as an input. The total procedure can be 

executed in less than 30 seconds for the birdcage configuration and less than 45 seconds for the PTx configuration, which enables seamless integration into the MR 

workflow. As a localizer is acquired at the start of any MR protocol, and the resulting B1
+ information can replace B1

+ calibration procedures, the procedure does 

not place a time burden on the MR workflow. The resulting SAR information can be used to personalize the safety margins, design SAR-optimized RF pulses and 

increase the headroom in allowed sequence parameters. 
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Fig. 1. Schematic overview of the approach. Ground truth dielectric body models (N=20) were generated from T1-weighted 

datasets acquired at 1 mm3 resolution. The deep learning method was then trained using the corresponding 9s localizer image 

with a resolution of 2 mm3 as input. Local SAR and B1
+ fields are finally simulated using a custom EM solver. 

 

Fig. 2. Example of a subject-specific dielectric body model derived from the 9s localizer 

compared to the ground truth. Shown are sagittal cross sections of the T1-weighted and 

localizer data, and corresponding material property maps. 

 

Fig. 5. PTx peak SAR10g predictions evaluated in 1000 random excitations, 
showing prediction errors in the personalized approach (a) and 

overestimations when assuming worst case values (b). The data indicate that 

the localizer-based approach results in an effective safety margin of 8.5%, 
compared to an average overestimation of 45.2% in the ‘worst case’ approach. 

 

Fig. 4. B1
+ (a) and SAR10g (b) simulations in the birdcage configuration, comparing predictions 

obtained in the ground truth body models against those obtained in localizer-based body models. 

 

Fig. 3. Numerical convergence analysis of the EM solver evaluated in the birdcage configuration (N=5). 

Shown are the average computation time and average peak SAR10g error with min/max error bands 

compared to results obtained at 1.5 mm. 
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Synopsis: One of the major challenges in the design of multichannel arrays for UHF MRI is minimizing coupling between elements. Shielded-coaxial-cable (SCC) 

coils have been recently proposed as highly decoupled elements per se: however, the decoupling mechanism of SCC coils is still not determined. In this work, we 

examined the relationship between coupling, surface current density uniformity, and the total current on coil conductor through measuring and simulating three 

different 2-coils arrays. While no correlation was observed between surface current density uniformity and interelement coupling, a negative correlation was 

observed between the coupling and the total current on coil conductor. 

 

Purpose: One of the major challenges in the design of multichannel arrays for UHF MRI is minimizing coupling between elements. A summary of the existing 

decoupling techniques can be found in1. Use of the shielded-coaxial-cable (SCC) coil as array elements is convenient since no additional decoupling is needed2,3. 

However, the exact decoupling mechanism of SCC coils is still not determined. One assumption was that interelement coupling is related to surface current 

distribution (SCD) on the coil shield. In this work, we examine the relationship between coupling, SCD uniformity, and Total Loop Currents (TLC) using 

Conventional Coils (CC) (1 mm and 3 mm wire diameter) and SCC coils at 300MHz (7T MRI). 

 

Methods: Square CC (arm length D=85mm) were fabricated using wires with two different diameters, 1 mm and 3 mm (Figure 1). The coils were tuned and 

matched at 12mm distance from a rectangular phantom using distributed capacitors and pi-matching networks. The phantom dimensions were 270x350x370mm, 

and the phantom was filled with a water-salt solution (2.5g/l of NaCl). 1mm and 3mm CC were placed into 2-coil array configurations, and a VNA (Agilent 

Fieldfox) was used to measure the S-parameters of the arrays for different separation distances between elements (0.5cm to 5cm with 5mm step) and for different 

amount of overlap (0% to 100% with 10% step). The normalized S21 parameter4 (nS21) was used to evaluate the total coupling between the array elements. 

Simulations have been performed in CST Microwave Studio software (Darmstadt, Germany), using a frequency domain solver with tetrahedral mesh. The 

simulation setup was the same as the measurement setup, with phantom properties 𝜀𝑟=78 and 𝜎=0.6 S/m. The maximum (max) and minimum (min) values of SCD 

have been exported from simulations. The parameter max/min was used to evaluate the uniformity of SCD along the two loops, while port currents were used to 

evaluate the TLC. The correlation between nS21 and max/min, and the correlation between nS21 and TLC has been examined using scatter plots. Fabricated SCC 

coils (as in [2]) have been used for comparison. The nS21 and TLC of SCC were simulated and measured, then compared with the 1mm and 3mm case. max/min 

data of SCC were not included, as max/min data of SCC also included the contribution from the inner conductor. Anyway, Figure 1c) shows good agreement 

between the SCD on the shield of an isolated 3mm SCC and the SCD on a 3mm wire. 

 

Results: Figure 2 shows the results for the nS21 parameter. In Figure 2a) agreement between simulations and experiments is shown. In Figure 2b) the simulation 

results for the nS21 in the 1mm, 3mm, and SCC case are compared. SCC were always better decoupled than 3mm CC, while 1mm CC were sometimes better 

decoupled than SCC in the overlapping region. Figure 3 shows the results for the TLC and for the maximum and the minimum value of max/min plots. As of TLC, 

Figure 3a) shows a comparison between the TLC on port1 (port1 and port2 signals showed good agreement) in the 1mm, 3mm, and SCC case. For every value of 

the distance between the coils, TLCSCC > TLC3mm > TLC1mm. Figure 3b) shows a comparison between the max/min parameter in the 1mm and 3mm case. The 

behaviour of the max/min parameter was noisy in both cases. Figure 4 shows the scatter plots relating nS21 to the TLC, and nS21 to the max/min parameter. While 

there was no evidence of correlation between max/min and nS21 (Figure 4b), a negative correlation between nS21 and the TLC was found (Figure 4a). The 

relationship between the TLC and nS21 was very different in the 3 examined cases, and was therefore non-generalizable. Suspecting that the negative correlation 

between nS21 and the TLC derived from mismatching, scatter plots of S11 versus the TLC were made, and are shown in Figure 4c). 

 

Discussion: The correlation between the coupling and the current on coil conductor was investigated. To quantify coupling, the nS21 parameter was used. To 

characterize the loop current, two synthetic parameters were extracted from the simulated design: port currents, and the max/min parameter. Port currents were used 

to quantify TLC, while the max/min parameter was used to evaluate SCD uniformity. While TLC was the highest for SCC coils, the coupling was the lowest: 

therefore, there was no positive correlation between the TLC and coupling. The noisy behaviour of the max/min parameter suggested no correlation between the 

max/min and nS21 instead. A more accurate evaluation was carried using the scatter plots. Results from the scatter plots confirmed the hypothesis of no correlation 

between the nS21 and max/min in all the examined cases, while a negative relationship between the total loop current and nS21 was found. We showed that negative 

correlation between nS21 and TLC could be partially attributed to coil mismatch. 

 

Conclusion: No correlation existed between the SCD uniformity (measured through max/min) and nS21, while a negative correlation existed between the coupling 

and TLC. The negative correlation could be partially attributed to mismatch. Further investigations are needed to understand the coupling mechanism of SCC. 
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Figure 1. Design of experiments and simulations (a) Geometry of fabricated coils (b) Geometry of the experiments and simulations (c) Surface current distribution for a 3mm wire square coil and a 3mm 

shielded coaxial cable 

 

 

 

Figure 2. Normalized S21 vs relative coil position. (a) Experimental vs simulated: the red curve represents simulated values, the blue curve represents experimental values (b) Normalized S21 values for 
1mm (blue curve) 3mm (red curve) and SCC (yellow curve) coils. In all the proposed plots, x represents the distance between the coil centers, while D represents either the length of the coil arm (in the 

square coil case) or the loop diameter (in the case of a SCC) 

 

 

Figure 3. Synthetic current parameters vs relative position. (a) Total loop current for 1mm (blue curve) 3mm (red curve) and scc (yellow curve) coils. (b) max/min parameter for 1mm (blue curve) and 3mm 
(red curve) coils. In all the proposed plots, x represents the distance between the coil centers, D represents either the length of the coil arm (in the square coil case) or the loop diameter (in the case of a 

SCC) 

 

Figure 4. Scatter plots (a) TLC vs nS21 (left graph) and max/min vs S21 for 1mm (blue dots) 3mm (red dots) and scc (yellow dots) coils. (b) S11 vs TLC for 1mm (leftmost graph), 3mm (center graph) and 

SCC (rightmost graph) coils 
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Synopsis: In this study, we aim to assess the feasibility of achieving simultaneous 1H&31P MR and PET imaging in an existing 7T MRI system. Due to space 

constraints, an integrated whole-body coil is not feasible. Instead, we investigate the possibility of using a 31P&1H array, and positioning the PET detectors 

between the RF shield in the patient tube and the gradient coil. 31P simulations with the dipole setup showed higher B1+ efficiency than with the body coil, and 

only ~5% degradation of the PET sensitivity, while the impact of the new setup was insignificant for the  

INTRODUCTION 

Recently, the integration of a wide-bore 1.5T body birdcage in a PET system has been demonstrated(1) 

 but this is feasible for MR imaging for 1H at 7T due to the shortened wavelength. Alternatively, dipole arrays have been popularly used for 1H imaging.  31P-

MRSI provides insight into the energy metabolism and cell proliferation and is thus invaluable for tumour characterisation. However, at low field strengths the low 

SNR necessitates large MRSI voxels in vivo. With the development of ultra-high field systems, in vivo 31P spectroscopy is practicable(2).  

However, the RF shield of the birdcage reduces the available room for PET detectors in the bore of the magnet.  

The main goal of this study is to achieve simultaneous 7T 31P/1H and PET imaging, with PET detectors integrated into an existing 7T MR system. Figure 1 

displays our current design of the system. By positioning the PET detectors between the RF shield and the gradient coil, we can omit further shielding of the PET 

crystals and electronics to save space. Furthermore, we aim to use a dipole array consisting of eight 31P elements stacked onto the 1H elements for 31P MRSI, 

since a whole-body birdcage coil would limit space for the PET detectors. 

We assess the effects of: 

1)     using an array of eight 31P/1H dipoles instead of a body birdcage coil on B1 and SNR for 31P 

2)      adding a RF shield at radius 29.5 cm on B1 at both frequencies, and  

3)      the presence of an array of eight 31P/1H elements on PET sensitivity 

METHODS 

The PET performance is evaluated at our 7T system (Philips Achieva, Best, The Netherlands). The influence of the shield at both frequencies is simulated using a 

hexagonal 26 litre salt-water phantom. Finally, the performance of a whole-body birdcage is compared to that of an 8-channel array for 31P at 7T in a scanner. 

MRI simulations 

RF coil simulations were first performed for both the proton and the phosphorus coils in the presence of each other.  The simulations are performed with the 

software Sim4Life (ZMT, Zurich, CH). 

For each frequency’s simulations, the ports of the elements for the other frequency are terminated by 50Ω. B1 maps are used to compare the influence of the 

presence of the shield on the array performance. The ports are then combined with a successively increasing phase of 45 degrees across all 8 elements to give CP 

performance.  The simulations for B1
+ are normalised to 1W of total input power to simplify comparison.  

MRI-Scanner 

For the 31P 7T phantom scans, identical sequences are used for both setups. The array is shimmed by means of custom-made cable lengths to obtain optimal 

constructive B1+ interference in the voxel containing the phosphorous-rich phantom (contained within the larger 26L phantom). The SNR is evaluated for both 

setups for a matched flip angle. 

PET-Scanner 

A cylindrical Ge-68 source (⌀20 cm, total activity: 34.1 MBq) was placed on the patient bed of a PET/CT system (Biograph mCT40, Siemens Healthcare, Erlangen, 

Germany). Two 3-minute PET scans were made with a single bed position centered on the phantom: one with and one without the presence of the 1H/31P stacked 

setup. Data were obtained from the raw PET data in the Siemens acquisition console. 

RESULTS 

MRI: Simulations 

The presence of the shield has no appreciable influence on the performance of the 1H/31P array for either frequency as in figures 3 for 1H and 4 for 31P. 

Scanner 

SNR comparison of shimmed 8-channel array (SNR of 233) and 31P birdcage (SNR of 126) from figure 5 shows that the B1 shimmed array outperforms the 

birdcage scanned. 

PET: Scanner 

The total number of true coincidences obtained from the PET scan of the cylindrical phantom with the stacked 1H/31P setup was 28321883, versus 29830146 for 

the phantom without the dipoles. This suggests that the PET sensitivity would be reduced by only ~5% when the current prototype dipole array would be used for 

1H/31P MRI/PET. 

DISCUSSION 

While the 8-channel 31P array seems to outperform the birdcage coil, it is to be noted that the array may require subject specific shimming. Shimming was 

performed for the specific voxel containing the phantom.  

Also of note is the relatively strong non-uniformity of the 31P field compared to the 1H field. It is conceivable that the flux is contained in the near-field of the 

elements and a further optimisation of the 31P elements may enhance B1+ uniformity. 

Effect of PET setup on MRI performance: 

The presence or absence of the shield led to insignificant changes in the B1 performance of the dipoles. However, with patients that are closer to the shield, the 

interaction is expected to increase. 

Effect of MRI hardware on PET performance: 

A ~5% degradation for the PET sensitivity was observed when this novel 8-channel 1H/31P setup for MRI at 7T is placed inside an existing MR-PET system. 

CONCLUSION 

31P imaging can be performed with stacked elements, with an insignificant impact of the shield on the MRI performance for both frequencies. The impact of the 

array coils on the PET sensitivity was only ~5%. Using our design, obtaining 1H and 31P MRSI and PET data is feasible for simultaneous 1H/31P MR-PET 

imaging at 7T. 
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FIGURES 

1. Setup: PET 

 

 

 

 

 

 

 

 

 

 

 

 

A: The PET detector design with 36 rows of crystals 

B: 3D model of PET setup 

C: EM simulation model showing PET detector ring, RF shield, RF 1H/31P stacked array and phantom – moving inwards 

D: The PET scan setup consists of the phantom alone (left) and the phantom with the 1H/31P stacked element arrays arranged radially with the 

cables routed along the z-axis (right) 

E: PET phantom positioning 

2. Simulations: Setup of stacked array on phantom 

 

3. Simulation results 1H: Difference in the B1+ in the phantom when the setup is simulated with the shield vs without the shield for 1H 

1H B1+ in phantom with shield (left) vs B1+ in phantom without shield (right) 

 

4. Simulation results: Difference in the B1+ in the phantom when the setup is simulated with the shield vs without the shield for 31P 

31P B1+ in phantom with shield (left) vs B1+ in phantom without shield (right) 

 

5. Scanner results: SNR comparison of shimmed 8-channel array (left, SNR of 233) and 31P birdcage (right, SNR of 126) shows that the B1 

shimmed array outperforms the birdcage 
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Introduction  

Halbach arrays are an appealing approach for low field MRI due to low cost and weight [1,2] but typically suffer from poor B0 homogeneity. B0 imperfections can 

be introduced by variations in the magnetization strength and direction of the individual magnets[3] or manufacturing tolerances in the magnet formers. Arrays 

typically need several shimming iterations, involving the addition of magnetic material inside the magnet, with positioning often calculated using stochastic 

algorithms.  

 

We present a new shimming approach that exploits the field patterns created by higher-order Halbach shim-arrays to correct for distinct spherical harmonic B0-

inhomogeneity terms. A homogenous B0 field (degree (l) = 0, order (m) = 0 spherical harmonic) is generated using a cylindrical dipolar (k=1) Halbach array where 

the magnetization direction rotates twice over circumference of the cylinder. A transverse linear gradient (l=1, m=|1| spherical harmonics) can be created using a 

quadrupolar (k=2) (see figure 1) Halbach array comprising three rotations over the surface, etc. For spherical harmonics where l > m, the field can be approximated 

by varying the magnetization of the Halbach array along its length. For example, to create a linear gradient along the bore (l=1, m=0) one could use a k=1 Halbach 

array with the sign of the magnetization reversing (smoothly) along its length. As such, given a sufficiently long Halbach array, a k=1 shim can be used to generate 

all spherical harmonics of order 0. We demonstrate this concept on a new custom-built 47 mT, head system where we improve the homogeneity of the magnet by 

50% by only correcting for the m=2 spherical harmonics. 

 

Method 

A 50 cm long, 31 cm diameter bore Halbach array based magnet was designed using the variable diameter homogeneity optimisation described previously [6]. The 

magnet consists of 25 rings, with 20 mm centre-to-centre spacing, of 12 mm cuboid N48 magnets: the central 19 rings have two layers of magnets and the three rings 

at each end have 3 layers.  The magnetic field was mapped over a 250 mm diameter spherical volume (DSV) with a Teslameter attached to a 3D positioning robot. 

The acquired field maps were fitted to up to 20th order spherical harmonics to reduce noise. The inhomogeneity over a 25 cm DSV was measured to be 11723 ppm 

(figure 3). The l=2 , m=2 spherical harmonic term was the most significant contributor with a magnitude of 10245 ppm and as such we designed a k=3 Halbach shim 

array. 

 

Shim magnets (up to 6 mm) are placed in 12 holders located on the outside of the magnet (see figure 2): each holder can accommodate 49 trays of magnets with 10 

mm spacing between the trays. For the first shim iteration we filled only 13 trays (40 mm spacing) to allow for later iterations. Magnets were placed on a cylindrical 

radius with up to seven magnets per tray segment (84 in total for each position along the magnet). The field distribution generated by each ring of magnets was 

calculated, and a least squares fit of the field performed to calculate the total magnetization needed in each ring. This was then approximated by varying the size and 

number of magnets in each ring. An experimental field map was acquired after shimming and we simulated a correction of up to 5th order spherical harmonics based 

on this map. 

 

To show the impact of the shim insert, spectra and images of an 8 centimeter spherical phantom were acquired. In both cases the field was shimmed using the linear 

gradients prior to data acquisition. Images were acquired using a 3D TSE sequence with the following scan parameters: FoV: 150x150x150 mm, resolution: 

1.5x1.5x1.5 mm, TR/TE: 600ms/15ms, ETL: 20, bandwidth: 20kHz, duration: 5 minutes 

 

Result 

Figure 2c shows the magnet configuration after optimisation with a single populated shim tray shown in 2b. The initial field (figure 3) shows the characteristic Z2 – 

Y2 spherical harmonic field. The correction field created by a k=2 Halbach shim array closely matches this inhomogeneity. There is good agreement between the 

simulated (6156 ppm) and measured (5879 ppm) fields after shimming. Simulations of corrections show the B0 homogeneity can be improved to 2771 ppm using 

shim arrays up to k=6 with only high frequency perturbations at the outer bore remaining, over a 20 cm DSV, sufficient for brain coverage, homogeneity improves 

to 282 ppm. Figure 5 shows that the acquired spectra and images are significantly improved after the shims are inserted. 

 

Discussion 

In this work we show a new approach to shimming Halbach-array magnets using higher order Halbach shim arrays to correct for spherical harmonic inhomogeneities. 

We achieve a 50 % reduction in inhomogeneity by correcting only for the m=2 order, with excellent agreement between simulations and measurements, showing 

promise for using this approach for correcting a larger set of spherical harmonics. There are practical limits to the highest order spherical harmonics one can correct 

due to discretization errors associated with the very high number of rotations needed. While we have applied this method to shimming an existing magnetic field, the 

basic principle could also be used to optimize the field distribution of  new magnets designs. 
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Figure 1. Transverse views of magnetic field patterns created by cylindrical Halbach arrays of different orders: in the bottom row the magnet rotations are offset by 90 degrees. The 
field patterns correspond to spherical harmonics of order m = 0 for k=1 up to m = |3| for k = 4, where the 90 degree offset changes the sign of the order (i.e. for k = 3 with no offset 
the field corresponds to the l = 2, m = 2 spherical harmonic, and with a 90 degree offset to l = 2, m = -2). 

 

Figure 2. Left) A photo of the constructed magnet with a 31 cm bore, the 12 shim inserts are visible in white on the outside. Middle) A table with the ring configuration for the 
magnet. Right) A photo of a single 3D printed shim tray with 13 of the 49 positions filled with magnets. The shim magnets are placed in plexiglass holders and click in to place. Once 
filled the shim trays can be slid in to the magnet frame. 

 

Figure 3. 1st row) Initial B0 field map shown in the three planes of the 25 cm diameter spherical volume. Inhomogeneities in the transverse plane are dominated by the 2nd order Z2 – 
Y2 spherical harmonic term. 2nd row) The simulated shim field created by a k=3 (quadrupolar) Halbach shim configuration. 3rd row) Simulated B0 field map after applying the shims. 
4th row) The measured field map after the shims are applied, showing excellent agreement with the simulated field maps. The initial inhomogeneity over a 25 cm sphere was 11723 
ppm, the simulated shimmed field was  6156 ppm and the measured field after shimming was 5879 ppm. 

 

Figure 4. Simulations of the shimming performance when correcting for up to m=5 shims. The initial inhomogeneity over a 25 cm DSV is 5879 ppm which is decreased to 2771 ppm 
after shimming. The remaining perturbations have a relatively high spatial frequency which may be difficult to correct with shim trays placed on the outside of the magnet and may 
require the placement of magnetic material on the inside of the magnet. 

 

Figure 5. Left) Spectra acquired of an 8cm spherical phantom with an without the shim inserts added. Middle and right) Images acquired using a TSE sequence of the same ball 
phantom. In all cases additional shimming was performed using the gradient coils. The line width and the image distortions are substantially improved after the shims are added to 
the system. 
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Synopsis:  

In this work, we evaluate the RF safety of external defibrillator electrodes at a field strength of 1.5T through phantom measurements and EM 

simulations. Electrode design considerations are identified and evaluated in terms of RF heating, and a modified electrode design is proposed which 

aims to mitigate the risk of RF heating. 

 

Introduction:  

Rapid application of external defibrillation to patients with ventricular fibrillation (VF) or cardiac arrest in an MRI environment is challenging due to 

the lack of commercially available external defibrillators that can be used in the MRI environment. In such situations, the patient is typically 

removed from the MR suite, involving time-consuming steps such as disconnecting RF coils and other peripherals, and then moved to another room. 

Finally, paddle electrodes are applied and the defibrillation procedure can commence, starting with diagnostic test procedures such as pulse detection 

and impedance measurement between the electrodes. Due to these time-consuming steps, and the rapid decrease in survival rate within minutes of 

onset of VF, higher-risk patient populations are typically denied from MRI access. 

Recently, interest has grown for developing MRI-compatible external defibrillator systems which can provide immediate in-bore defibrillation. Pilot 

animal studies with porcine models have demonstrated the feasibility of high-energy (360 J) in-bore defibrillation discharges, using modified high 

voltage twisted pair cables equipped with RF baluns for MR compatibility1,2. Limited insights have yet been established in terms of MR safety of 

these devices, in particular, radiofrequency (RF) heating from exposure to high SAR sequences was evaluated only for relatively short durations of 

6-11 minutes. Despite these short exposure durations, in some cases skin alterations such as redness but also deeper lesions were observed, indicating 

potential deleterious effects depending on the electrode type and design. 

In this work, we evaluate the RF safety of external defibrillator electrodes at a field strength of 1.5T through phantom measurements and EM 

simulations. Electrode design considerations are identified and evaluated in terms of RF heating, and a modified electrode design is proposed which 

aims to mitigate the risk of RF heating. 

 

Methods: 

Phantom and Defibrillation Electrode: A 5L rectangular phantom was made consisting of agarose gel (2% w/w) with 3 g/L NaCl for electrical 

conductivity adjustment. A generic AED electrode (Heartstart FR2, Philips Healthcare, Best, the Netherlands) of size 10 × 18 cm was positioned on 

top of the phantom, and subsequently replaced by a modified electrode first with slits in the feet-head direction and secondly with slits in the left-

right direction. 

RF Heating: A high-SAR protocol was performed in a Siemens Aera 1.5T MRI system. The protocol consisted of a T1-weighted FSE sequence with 

minimized TR and 180° refocusing pulses to maximize RF exposure, with a duration of 20 min. Before and after each heating period, thermographic 

images of the phantom surface were obtained using an infrared camera (Flir One Pro-Series, Teledyne FLIR, Wilsonville, OR) after removal of the 

electrode. 

EM simulations: A generic quadrature body coil model was simulated at 64 MHz using FDTD (XF7.4, Remcom inc., State College, PA) in a 2-mm 

grid. The resolution around the phantom interface (εr = 50, σ = 0.5 S/m) was increased to 0.5 mm in order to accurately represent the electrode 

adhesive (εr = 2.5, σ = 0.05 S/m). All simulated data were normalized to an average B1
+ of 2 T in the transverse cross-section of the phantom. 

 

Results: 

Thermographic images are shown in Figure 1, indicating that electrode modifications with slits in the feet-head direction show different RF heating 

patterns. Local RF heating was doubled when vertical slits were introduced and decreased when horizontal slits were introduced. 

EM simulations of the phantom setup are shown in Figure 2, showing very similar heating patterns as observed via the thermographic camera. A 

considerable increase in local SAR10g was observed when the slits were oriented in the longitudinal direction, while having slits in the transverse 

direction reduced SAR10g. 

 

Discussion and Conclusion: 

In this preliminary study we have evaluated the RF safety of defibrillation electrodes used in in-bore defibrillation setups. When RF exposure levels 

are increased for example in high-SAR FSE or bSSFP sequences, these data indicate that RF heating underneath the electrode can take place and 

reach levels considerably higher than previously reported while complying with global SAR limits.1,2 The relative heating patterns on the surface of a 

phantom showed a strong correlation with EM simulation, reflecting also a strong dependence on electrode design parameters, warranting further 

evaluation for the development of MR compatible external defibrillators.  
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Fig.1 Thermographic images showing temperature increases in different defibrillation electrode configurations. RF heating was 

considerably higher when vertical slits were introduced and decreased for horizontal slits. 

 

Fig.2 EM simulation results showing considerable changes in SAR10g in different defibrillation electrode configurations. When vertical slits were 
introduced, local SAR10g was almost doubled in comparison to having no electrode, while decreasing for the case of having horizontal slits. 
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Synopsis: External electromagnetic interference (EMI) in the unshielded low field and portable MRI systems can swamp the signal, and various multi-detector 

methods have been developed to minimize it. A new EMI cancellation method designed for a single-channel receiver-system has been implemented on a 50 mT 

system by using the MR-inactive channel of a birdcage coil and a 180o power hybrid. This method results in up to a  97% reduction in the standard deviation of 

external EMI. 

Introduction: Low field MRI has received much attention in recent years due to its low cost and portability 1-3, along with the possibility of its use outside of RF 

shielded environments in unconventional locations. However, this increases the potential for substantial electromagnetic interference (EMI) created by equipment 

close to the scanner, in the image. Many different methods to reduce EMI for MRI/NMR have been explored in the past4-10, mostly by using external sensors, with 

impressive results shown recently for a multi-channel low field system10.  In this work, we test a simple single-channel approach on a Halbach-based low field MRI 

system operating at 2.15 MHz1 , using a birdcage coil with the MR-inactive port detecting only the EMI. Phantom and in vivo images with and without EMI have 

been acquired to evaluate the approach. 

Methods: The concept of the EMI-cancellation scheme is shown in figure 1. One channel of a circularly-polarized birdcage coil with the B1-field orthogonal to the 

transvere B0-field acquires signal plus EMI, while the other channel with the B1-field  parallel to B0 only detects the EMI. For a simple acquisition system which 

only has one receive channel, the signals are subtracted using a 180o power combiner which makes the overall cost and complexity of the total system as low as 

possible.  

A 16-leg low-pass transmit/receive birdcage for knee and calf muscle imaging was designed, simulated, and constructed (Figure 1).  The coil dimensions were 19 

cm × 16 cm × 16 cm to accommodate the human knee.  The birdcage coil was constructed on a plexiglass cylinder using copper tape with 13 mm width and 0.06 

mm thickness (Figure 1). A 180⁰ power splitter/combiner (SBTCJ-1W+, Mini-Circuits, NY, USA), placed inside an aluminum shielded box, was connected to the 

two ports.  

To test the method three different imaging setups were considered. First, the normal operating mode in which the subject’s torso is covered by a conductive blanket 

(Holland Shielding Systems, Dordrecht, the Netherlands) and all other sides of the Faraday cage are closed. Second, an unshielded state (no blanket, Faraday cage 

open) with a 2.15 MHz sine wave produced by a function generator (33500 Series waveform generators, Agilent Technologist, US) acting as a narrow band EMI. 

Finally, unshielded as for the previous case, with a broadband EMI broadcast over a frequency range 0-3 MHz. For each of these setups, the following data were 

acquired. First, with only the MRI signal (S) port connected directly to the spectrometer, second with only the EMI port connected, and third the full setup with 

both the S and EMI ports connected via the power combiner to the spectrometer (Figure 1). A 3D turbo spin-echo (TSE) sequence was used to obtain images. The 

sequence parameters for the phantom (water-containing cylinder with diameter 14 cm, length 90 cm) imaging were TR/TE: 1000 ms/15 ms, ETL: 20, FOV: 

150x150x300 mm, 2x2x5 mm resolution, and one average. In-vivo TSE parameters were TR/TE: 250 ms/15 ms, ETL: 4, FOV: 160x160x200 mm, 2x2x5 mm 

resolution, two averages, and two volunteers. 

Results: Reflection coefficients (S11) for each port and coupling between two ports (S12) were lower than -27 dB,. Power splitter evaluation gave less than 0.2 dB 

insertion loss, 0.5⁰ phase unbalance, and -25 dB inter-channel isolation.  Figure 2 shows results acquired from the first shielded setup. The ratio of the signal from 

the S port to that of the EMI port was 45:1, representing a greater than 97% isolation between the ports. The signal from the combined port was reduced by ~40% 

compared to that of the S-port without the combiner present due to the inherent 3 dB reduction in signal and noise from the 180o hybrid. In the second experiment 

(figure 3), the standard deviation of the single line of narrowband EMI throughout the image was measured, and resulted in 97%  and 71% reduction for the 

phantom and in vivo images, respectively. Figure 4 shows the third setup in which broadband EMI cancellation was 97% for the phantom and 90% for the in vivo 

images, respectively. 

Discussion and Conclusion: A new EMI cancellation method has been introduced and tested for a 50 mT Halbach-based portable MRI system under different EMI 

conditions. A significant reduction in EMI was achieved using the new design. This simple approach has both advantages and limitations with respect to other 

methods. It does not require external sensors or extensive signal processing and can be implemented on a single receiver console. However, the use of a  180o power 

combiner does reduce the signal by 40%. The approach also relies on the external interference having essentially random polarization. Finally, the birdcage coil 

used here does have lower sensitivity than an equivalently-sized solenoid, although the solenoid also picks up a much larger EMI signal than the birdcage due to its 

B1 spatial distribution which extends out of the magnet. 
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Figure 1. Top: A schematic of the method used to cancel EMI. The RF coil has two orthogonal ports, one of which is orthogonal to B0 and the other coincident. Signals from the MR-inactive and MR-active 

ports are combined with a 180o phase shifter to remove the EMI. Bottom: Constructed birdcage coil. 

 

Figure 2. A: Three axial (left) and sagittal (right) slices from the phantom. B: Central-slice of phantom (top) and in vivo (bottom) images from the combined port (left) and the S port (middle) with 

corresponding 1D-profiles (right). The conducting blanket is present, the faraday shield is closed, and there is no external EMI applied. 

 

Figure 3. Phantom (top) and in vivo (bottom) with a single frequency EMI applied within the imaging bandwidth, apparent as the line through the image in the phase encoding direction. On the right, the 
orange lines show a projection along the line of the EMI from the S port, and the red lines from the combined port. The standard deviation (σ) of the EMI signal is also shown. There is no conducting 

blanket and the Faraday shield is open. 

 

Figure 4. In vivo and phantom results using an external 0-3 MHz broadband EMI noise source. There is no conducting blanket and the Faraday shield is open. The red rectangle shows the region of interest 

that was used to measure the standard deviation (σ) of the EMI.   
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Synopsis: We developed a wearable setup to detect heart motion and stroke volume with an RF antenna connected to a miniature network analyzer. EM simulations 

were used to demonstrate the possibility of measuring changes in stroke volume with an RF antenna and to investigate the spatial sensitivity of the antenna. A Valsalva 

manoeuver was used to provoke changes in stroke volume, which were observed with the RF antenna and in cine MRI acquisitions. 

Purpose: RF coils in MRI can be used to measure physiological motion during MR acquisitions1–4. In general, various types of RF antennas can be used as wearable 

motion sensors outside of the MRI system5–7. Since the input impedance of an RF antenna is modulated  by conductivity of the tissue load8, we hypothesize that RF 

antennas are sensitive to the amount of blood pumped by the heart per stroke (stroke volume). To investigate this hypothesis, we performed electromagnetic 

simulations of RF antenna impedance on a moving phantom and human body model. Impedance measurements were performed with an RF antenna before and after 

a Valsalva manoeuver (decreases the stroke volume9) and validated with MRI. To our knowledge, accurate non-invasive measurement of stroke volume is currently 

only possible with MRI or echo10. Our aim is to develop a low-cost wearable device that can be used to monitor stroke volume at home, for example in patients with 

heart failure.   

Methods: Electromagnetic simulations were performed in a phantom to investigate the origin of sensitivity to motion in an RF antenna (Sim4Life, Zurich Medtech, 

Zurich, Switzerland). A dipole antenna was positioned on a cylindrical phantom with inside a sphere with the properties of blood (Figure 2). The sphere moved and/or 

increased in volume in 20 simulations. EM simulations were also performed on an XCAT model11 (10 simulated cardiac phases, no respiratory motion). To visualize 

spatial sensitivity of the antenna, we used the reaction theorem, which expresses the change in complex antenna impedance in terms of electromagnetic fields with 

respect to a “dielectric” reference state at time t=012: 

𝑍(𝑡) − 𝑍0 = −
𝑗𝜔

𝐼2
∫ [𝜖(𝑟, 𝑡) − 𝜖(𝑟, 0)]𝐸(𝑟, 𝑡) ∙ 𝐸(𝑟, 0)𝑑𝑉 =  −

𝑗𝜔

𝐼2
∫ 𝑑𝑍𝑑𝑉

𝑉

     (1)
𝑉

 

Simulations were performed at various transmit frequencies to investigate the effect of operating frequency on spatial sensitivity of the signal, which was visualized 

by plotting dZ. A 12cm diameter loop coil (Figure 1a) was matched at 128 MHz. The loop was placed in a neoprene (1b) belt to ensure proximity to the chest. 

Measurements were performed with  a tabletop network analyzer (Planar TR1300/1, Copper Mountain Technologies, IN, US). An example of raw measurement data 

is shown in Figure 1c, both cardiac and respiratory motion are observed. To provoke changes in the stroke volume, 4 volunteers (3 male/ 1 female, age 21-30, BMI 

18.4 – 22.0) performed a Valsalva manoeuver, while continuously measuring RF impedance. The same procedure was performed in the MRI scanner (1.5T Philips 

Achieva, Philips Healthcare, Best, The Netherlands), where a stack of transverse cine slices (2*2*10 mm3, TR/TE 2.40/1.19 ms, FA 60°, 10-15 slices) was acquired 

before and at the end of the Valsalva manoeuver.   

Results: Figure 2 shows the results of phantom simulations. There is a linear relationship between the volume of the sphere and changing antenna impedance. The 

antenna is most sensitive when the sphere moves closer to the antenna. Figure 3a shows the spatial sensitivity dZ of the antenna to heart motion. Signal only comes 

from regions where motion causes changes in the dielectric properties, which is caused by the (𝜖(𝑟, 𝑡) − 𝜖(𝑟, 0)) term in equation 1. Figure 3b shows that  magnitude 

of the signal is comparable between frequencies, but the cardiac waveform differs strongly. The dipole antenna is more sensitive to cardiac motion than the loop coil. 

After bench testing with loop coils and dipole antennas at various frequencies, a loop coil at 128 MHz was used because this provided the most stable cardiac signal 

over multiple volunteers. Figure 4 shows measurement results on a single volunteer during Valsalva. The raw signal of the loop coil in a single volunteer is shown in 

Figure 4a. Both respiratory and cardiac components are visible in the signal. We consistently found in experiments that there is an almost 90° phase shift between the 

respiratory and cardiac component in the complex impedance signals. Figure 4c and 4d show that the area under the curve (AUC) and the root-mean-square (RMS) 

value of the signal decrease during Valsalva, which is also expected from physiology9. A decreasing stroke volume is also observed during Valsalva in the MRI 

acquisitions (Figure 5a/b). 5c and d show a comparison of the change in the RF impedance and in the stroke volume before and during Valsalva. A strong correlation 

is observed for volunteer 2-4 (M), but not for V1 (F).  

Discussion: Simulation results indicate that the RF antenna impedance is sensitive to motion of interfaces close to the antenna. Indirectly, antenna impedance can 

therefore be used to estimate volume changes of organs close to the antenna, such as the heart or the lungs. The spatiotemporal sensitivity of the antenna to heart 

motion makes it strongly affected by transmit frequency, as indicated in figure 3. By using the Valsalva manoeuver, it is possible to provoke a decrease in stroke 

volume that is observable with a loop coil. Inter-subject variation of the sensitivity to changing stroke volume and the design of a flexible3–15 setup are subject for 

further investigation.   

Conclusion: We demonstrated through EM simulations and experiments that RF antennas are sensitive to changes in stroke volume. This enables the development 

of a low-cost wearable based on RF technology which can constantly monitor stroke volume, for example in patients with heart failure. 
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Figure 1: 1a. Wearable setup for monitoring stroke volume, including a 128 MHz loop coil, which is 
placed in a neoprene strap on the chest of the subject. To make the device completely wearable, a 

NanoVNA (nanovna.com) was used was adapted (Wavetronica, Utrecht, The Netherlands) to transmit 

data to a PC with a Bluetooth dongle. 1b.  Raw complex signal as measured with the loop coil, showing 

both cardiac (real, blue) and respiratory motion components (imaginary, red).  

Figure 2: 2a. Setup used in phantom simulations, containing a cylinder with average electrical properties of the torso 

(ɛr =40, σ = 0.4 S/m), and a sphere with the electrical properties of blood (ɛr =62 σ = 1.42 S/m). The sphere either 

increases in radius (2b), moves towards the antenna (2c) or increases in radius but remains at the same distance from 

the antenna (2d). Figure 2e-g show the respective changes in antenna impedance.  

 

Figure 3: 3a. spatial maps of the magnitude and phase of the antenna sensitivity dZ to cardiac 
motion, for various operating frequencies and antennas. Respiratory motion was not included 

in the model. 3b. impedance change for the different phases in the heart cycle as calculated 

from the fields with the reaction theorem and as extracted from the ports in the simulation. 

Figure 4: Exemplary signals during Valsalva manoeuver in V4 (M, 22y, BMI 18.4). 
4a Raw signal, where the heart motion is visible in the real part and the breathing 

motion is visible in the imaginary part of the signal. 4b Cardiac signal after filtering. 

Time of the Valsalva manoeuver is indicated by the lines. During the Valsalva 

manoeuver, the RMS value (4c) and the AUC (4d) decrease.   

 

Figure 5: 5a center slice of a transverse cine acquisition from which stroke volume was calculated. 

Clear differences are visible in the size of the heart before and after Valsalva. 5b. Stroke volume before 
and after Valsalva, as calculated from a stack of cine images covering the left ventricle. 5c and 5d. 

Ratio of the RMS value and the AUC of the RF signal before/after Valsalva, plotted against the ratio 

of stroke volumes before/after Valsalva as calculated from the MR images.    
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Synopsis: In the head and neck region, precise heating and temperature monitoring is a challenge. The MRcollar, an MR compatible head 

and neck microwave hyperthermia applicator has been developed for conformal heating and to enable MR thermometry (MRT) during 

the treatment. To deliver on the needs of accurate temperature monitoring, the MRcollar has been equipped with 8-channel receiver coil 

array. This coil array improves increased the SNR by 5 times compared to the body coil of the MRcollar. Increase in the SNR also led to 

improvement in the MRT precision, from 0.91 °C to 0.37 °C. 

 

Introduction 

In the head and neck region, precise heating and temperature monitoring is a challenge. The MRcollar, an MR compatible head and neck 

microwave hyperthermia applicator has been developed for conformal heating and to enable MR thermometry (MRT) during the treatment. 

MRT has great potential to deliver on temperature monitoring needs but the precision and speed requirements demand high signal-to-

noise-ratio (SNR) measurements. Hereto, we developed an integrated applicator-multichannel receiver coil array concept for high SNR 

performance and parallel imaging by near-skin receiving the radio frequency signals of the MR imaging [1]. This concept was used in the 

MRcollar that has twelve antennas for heating and now incorporates eight MR-receive coils. Herein, we quantify the SNR and MRT 

precision gain that the integrated receive coils offer against receiving the signals by the body coil of the MR scanner. 

 

Methods 

The MRcollar (fig. 1a) consists of two crescent moon-shaped shells each consisting of six antenna modules in a 2 x 3 arrangement placed 

around the head and neck for 12 antenna setup. Every module contains a printed Yagi-Uda antenna submerged in water and operating at 

433.92 MHz. The MRcollar houses 8-channel MR receiver coil array tuned to 63.89 MHz for MR imaging at 1.5 T. Each of the moon-

shaped shells include a 3-channel receive coil array (a bottom (15 x 8 cm), a central (15 x 12 cm) and a top (15 x 8 cm) rectangular shaped 

loops) and the head rest includes a 2-channel receive coil array (butterfly coil 20 x 9 cm and 9 x 9 cm rectangular shaped loops). 

The cylindrical phantom provided by the MR vendor as well as the standard MRT sequence, i.e. a fast gradient echo sequence was used 

for the evaluation with the following parameters: TR: 100 ms, TE: 19.2 ms, flip angle 30°, resolution 1.25 x 1.25 x 3 mm3, matrix 

resolution 256 x 256, total acquisition time 25.6 s. In total, 12 acquisitions were made. SNR was calculated in a region of interest (ROI) 

(fig. 1b) using the dual image subtraction method [2]. Temporal MRT precision was calculated for each voxel assuming that the 

temperature remained constant during the experiments. PRFS thermometry was calculated using the first acquisition as the baseline, the 

voxels which are highlighted in red in fig. 1c were used for field drift correction [3].  

 

Results 

Example magnitude images for the body coil as receiver and the MRcollar receiver coil array are visualized in the first column of fig. 2, 

and example MRT and precision maps are given in the columns 2-4 of fig 2. SNR was 23 when the phantom was imaged using the body 

coil as a receiver and SNR was improved around five-fold to 120 for the 8-channel receiver coil of the MRcollar. Since MRT is a 

differential method, improvement in the SNR also led to an improved MRT precision. The lowest measured standard deviation reduced 

from 1.8 °C for the body coil acquisition to 0.55 °C for the MRcollar receiver coils. The average standard deviation in the ROI reduced 

from 0.91 °C for the body coil to 0.37 °C for the MRcollar coils.  

 

Conclusion  

Integrating the receiver coils in the MRcollar led to the an important improvement in SNR. The 5-fold increase in the SNR improves the 

accuracy and the precision of the MRT results since MRT is a differential measurement method which amplifies the effect of the noise. 

In addition to the SNR benefits, the integrated receiver coil array also allows for the use of advanced MR techniques, such as parallel 

imaging, to enable faster acquisition times for correction of the impact of respiratory motion. Hence, integration of the receiver arrays 

close to the skin into MR hyperthermia devices provides a crucial step towards reliable temperature monitoring during hyperthermia. 
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Figure 1. a) The MRcollar and the locations of the 8-channel coil array, b) the ROI that was used for SNR calculation, c) the voxels that 

was used for B0 drift correction. 

 

 

Figure 2. Example MRT maps (first four columns) and temporal precision map for MRT (last row) for the body coil (top row) and for the 

8-channel coil array (bottom row)  
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Synopsis: The sound level in MRI can be lowered by using a silent gradient axis that adds extra soundless encoding. In this work, we present the field characteristics 

and first images for a silent gradient designed for a clinical 3 tesla system. This silent gradient featured a built-in 32-channel receive coil and weighs 21 kg. The 

gradient field could be oscillated at 23.5 kHz and featured a linear region of 20 cm. The coil had limited interactions with the transmit B1 field and did not affect B1 

homogeneity, which was showcased in phantom and in-vivo images. 

Purpose: Most MR-exams intrinsically feature loud acoustic noise as the imaging gradients need to be switched fast and at high amplitude to ensure short acquisition 

times. Together with claustrophobia these loud sounds are the main sources of patient anxiety during MR-exams, which might lead to a degradation of the image 

quality (1,2). Previously, we have presented a silent gradient axis that aims to lower sound levels by providing extra soundless spatial encoding and allow the other 

imaging gradients to be switched slower, which reduces the sound level without loss of imaging time(3). In this work, we present the field characteristics and first 

images for a silent gradient designed for a clinical 3 tesla MR-system. 

Methods:  

Gradient design 

An open and lightweight design was targeted for the silent gradient (Futura composites, Heerhugowaard & Tesla DC, Zaltbommel).  The silent gradient coil consisted 

of 32 windings distributed in two groups (16 windings per group), which were spaced 25 cm apart and produced a z-gradient field. By grouping the windings like 

this, the amount of epoxy needed to pot the gradient coil was minimized resulting in a weight of 21 kg of the whole coil, which facilitates easy installation comparable 

to a standard head coil.  The gradient coil was made resonant at 23.5 kHz using two capacitors and combined with a modified gradient amplifier (NG500, Prodrive 

Technologies, Son) to maximize the silent encoding (4). Furthermore, a 32-channel receive coil array was integrated into the coil with the receive elements distributed 

over 4 rows extending in the feet-head direction to facilitate parallel imaging along the direction of the silent gradient. This receive array consisted of two attached 

PCB’s containing all coils which were decoupled based on a predetermined overlap.  Figure 1 shows the final coil design.  

Characterization 

The gradient field distribution was calculated using Biot-Savart and was used to determine gradient efficiency and field linearity. The exact resonance frequency and 

spatiotemporal gradient field behavior were measured using a dynamic field camera (Skope Magnetic Resonance Technologies AG, Switzerland). During these 

measurements the gradient coil was positioned in a 7T MR-system (Philips, The Netherlands). To investigate transparency of the setup to the transmit field of the 3T 

RF body-coil, B1-mapping was performed with the same subject, once with the setup and once with the standard Philips head coil.  

Images 

For imaging experiments, the RF coil array with the embedded silent gradient was positioned in a 3T MR-system (Ingenia CX, Philips, Best).  A phantom consisting 

of a water-filled bottle was imaged to investigate the imaging performance along the linear region of the gradient. Here, a modified 2D gradient-echo sequence that 

plays out the silent gradient during readout was used with the following imaging parameters: coronal slice orientation, in-plane resolution = 2 x 2 mm2, FOV = 256 

x 512 (RL x FH) mm2, slice-thickness = 4 mm, TE = 5.6 ms, TR = 60 ms, and flip angle = 16°.  Additionally, a similar sequence was used to image a volunteer with 

the following imaging parameters: coronal slice orientation, in-plane resolution = 1 x 1 mm2, FOV = 256 x 256 (RL x FH) mm2, slice-thickness = 6 mm, TE = 21 ms, 

TR = 60 ms, and flip angle = 21°.  All images were acquired with the silent gradient operating at 22.5 mT/m. Reconstruction was performed off-line in MATLAB 

using the field camera data and a non-uniform Fourier transform.  

Results and Discussion: Figure 2a shows the field distribution of the silent gradient. Here, the gradient efficiency was determined to be 0.56 mT/m/A. Figure 2b 

shows the deviation from a perfectly linear gradient field for the silent gradient, which shows that the gradient field has less than 10% deviation from linearity in a 20 

cm DSV. The field measurements in figure 2C shows the gradient field oscillating at 23.5 kHz and at an amplitude of 22.5 mT/m. Additionally, the silent gradient 

needs about 1.5 ms to reach a steady state and ~1 ms to return back to zero.  

The B1-maps (Fig 3ab) shows similar performance with both setups in the MR-system suggesting that the interaction with the gradient coil is limited. On average the 

B1 measured with the silent gradient system was ~10% lower. However, the B1-field homogeneity was not affected as the spread in B1-values (Figure 3c) was similar 

for both setups (σB1-silent gradient = 2.3 µT vs σB1-standard coil = 2.4 µT). 

Figure 4a shows that no significant distortion is observed over the 20 cm linear region. However, some signal loss was seen outside this region, which might be 

recovered by incorporating the field non-linearity in the reconstruction. In Figure 4b, the in-vivo image shows that the whole-brain fits in the 20 cm linear region.  

Earlier work on silent gradient axes was performed at 7 tesla, where a 26 dB reduction in sound level was achieved for a T1-weighted anatomical scan (5). Translating 

the concept of the silent gradient axis to 3 tesla is expected to yield similar or lower sound levels as the Lorentz forces at 3 tesla are intrinsically lower.  

Conclusion: We have presented a silent gradient designed for 3 tesla MR-system, which can enable quiet and fast brain imaging. 
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a. b. c. 

Figure 1 The final gradient design. This shows the silent gradient in a 3T MR system (a.) and the open design of the coil (b.). c. shows the silent gradient without covers and with a 

volunteer for scale. Note the open PCB design which enables the use of a mirror system to look at images/movies during scanning. 

Figure 2 Characterization of the silent gradient. a. field distribution for 1 A of current with in green 

the DSV with <10% deviation from linearity. b. the deviation from linearity with in green the DSV 
with < 10% deviation from linearity. c. The field camera measurement of the silent gradient.  

Figure 3 B1-mapping results for a target B1 of 13.49 µT: a. with the silent gradient in the MR-

system b. with the standard head coil in the MR-system c. histogram of the B1 measured in the 

whole-brain for both setups. Note that the B1-distributions of both measurements look similar 
(similar B1 homogeneity). 

Figure 4 Images acquired with the 

silent gradient. a. Bottle phantom with 

a large field-of-view in the direction of 
the silent gradient. The green lines 

indicate the edges of the 20 cm DSV 

with <10% linearity. b. in-vivo image 

with the green lines indicating the DSV 

with <10% linearity. 
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Introduction 

Magnetic resonance fingerprinting (MRF) offers a way to acquire relaxation time maps in an efficient manner and has shown its use in many 1.5T and 3T applications1. The T1 and T2 
relaxation times can potentially be used to generate a variety of image contrasts retrospectively2. This could be particularly relevant at low field3, where scans take many minutes due to a 
lower signal-to-noise ratio (SNR). Portable point-of-care permanent magnet systems often have large B0 inhomogeneities, which can cause image distortions and signal dropout. MRF is a 
flexible acquisition framework4 that can encode the B0 field inhomogeneities in the acquisition process, to incorporate them in the reconstruction process. In this work, we use an alternating 
TE pattern in the MRF sequence that supports ΔB0 estimation from the MRF data. We use the reconstructed ΔB0 map to correct for B0-induced image distortions of the MRF images, before 
matching them to the calculated dictionary. This method reduces distortions in the relaxation time maps without needing to acquire an additional ΔB0 map.  

 

Methods 

Hardware: We used a 50 mT Halbach magnet consisting of 23 rings filled with neodymium boron iron magnets, shown in Fig. 1A, with custom-built RF and gradient amplifiers and a Magritek 
Kea2 spectrometer (Fig. 1B). A 15 cm diameter, 15 cm long solenoid coil was used in transceive mode (Fig. 1C). A mechanical robot with a magnetic field probe was used to map the B0 
field during system installation.  

Fingerprinting implementation: MRF data were acquired with a FISP sequence5, using an optimized flip angle pattern of 240 RF shots, a constant TR of 12 ms and an alternating TE pattern 
to support ΔB0 estimation, shown in Fig. 2A. The dictionary was generated using the extended phase graph formalism, with T1 values ranging from 20-500 ms (5 ms steps), T2 values 
ranging from 10-500 ms (5 ms steps) and B1

+ fraction ranging from 0.05-1.50 (0.05 steps).  

MR Data acquisition: Experiments were performed in the lower leg of 2 healthy volunteers with informed consent obtained. Three-dimensional MRF scans were acquired with a Cartesian 
sampling scheme shown in Fig. 2B. Scan parameters: FOV = 170×150×99 mm3, resolution = 2.5×2.5×3.0 mm3, TE1/TE2/TR = 6.00/6.15/12.0 ms, imaging bandwidth (BW) = 294 Hz/pixel, 
undersampling factor = 8.6, scan time = 13 min and 6 s. Inversion recovery (inversion times = 25/50/75/100/150/300 ms) and multi-echo-spin-echo (TEs = 
20/40/60/80/100/120/140/160/180/200 ms) were used for reference T1 and T2 mapping, respectively. A TSE-based ΔB0 map was acquired for comparison6. 

 
Reconstruction: MRF images were reconstructed using a matrix completion-based reconstruction on the two separate TE series7. A ΔB0 map was estimated from the two series using total 
variation regularization and spherical harmonic decomposition and used in a model-based reconstruction framework to correct for image distortions6. The resulting combined image series 
were matched to the dictionary using the simulated B1

+ excitation profile (Fig. 1E) as prior information for each slice. This pipeline is schematically shown in Fig. 2C. 
 

Results 

Figure 3 shows that the relaxation times obtained with MRF (constant TE, without distortion correction) are close to those obtained with the reference techniques, but the SNR of the MRF 
maps is lower compared to that of the reference maps, as expected. Using an alternating TE pattern results in very similar parameter maps compared to using a constant TE (both without 
distortion correction), as shown in Fig. 4. Estimating a ΔB0 map from the alternating TE pattern and using it in a model-based MRF reconstruction results in matched parameter maps with 
reduced distortions. The estimated ΔB0 map is in the same range as that estimated from a TSE sequence, with a maximum error of 105 Hz.  

 

Discussion  

The acquired MRF ΔB0 map corresponds with the map measured with a robot and that measured with a fully encoded TSE sequence. The difference between the MRF-based ΔB0 map 
and the TSE-based ΔB0 map could have been introduced by hardware imperfections (spectrometer timing jitter, eddy currents, etc.) leading to phase errors in the MRF sequence or by 
heating of the magnet during the imaging session. Using the ΔB0 map in a model-based reconstruction framework reduces the image distortions along the readout direction of the parameter 
maps. The remaining signal void at the left side of the M0 map is a result of through-plane B0-induced dephasing, for which the current reconstruction algorithm does not correct. Future 
work could resolve this by incorporating a ΔB0 map with a higher through-plane resolution into the signal model. 

 

Conclusion 

It is possible to integrate ΔB0 estimation and correction in an MRF acquisition and reconstruction framework for a 50 mT permanent magnet MR system. The proposed framework reduces 
the image distortions of the MRF relaxation time maps without increasing the scan time.  
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Figure 1. Experimental setup. (A) Halbach magnet. (B) Gradient amplifiers (left), RF amplifier (middle) and spectrometer (right). (C) solenoid transceive RF coil. (D) ΔB0 field in Hz with respect to the 
center frequency, measured with a robot. (E) RF excitation profile along the bore.  

 

Figure 2. Fingerprinting sequence and reconstruction pipeline. (A) The MRF sequence uses a flip angle train of 240 RF shots and an alternating TE pattern similar to that in Ref. 8. (B) The 3D sampling 
pattern. The sampled phase encoding numbers are plotted for each of the RF shots. (C) The MRF data is reconstructed using matrix completion, after which a ΔB0 map is estimated from the TE difference. 

The ΔB0 map is used to correct for B0-induced image distortions in the MRF images, before matching the data to the dictionary. 

 
 
Figure 3. Comparison of relaxation time maps obtained with MRF and with reference techniques in the lower leg. The muscle T1 times measured with MRF are in the same range as those measured with an 

inversion recovery sequence (175 ms vs 165 ms), but the muscle T2 times measured with MRF are longer than those measured with MESE (60 ms vs 40 ms). The SNR of the MRF maps is lower, as expected. 

Scan parameters for inversion recovery: TE/TR = 12/900 ms, echotrain length (ETL) = 5. Scan parameters for multi-ech-spin-echo: TR = 1250 ms, echotrain length (ETL) = 5. 

 
Figure 4. Comparison between uncorrected MRF data with constant TE and uncorrected and corrected MRF data with alternating TE. The relaxation time maps obtained from the MRF scan with an alternating 

TE pattern (without distortion correction) are very similar to those obtained with a constant TE pattern. A ΔB0 map was estimated from the alternating TE data and used to correct for image distortions along 

the readout direction before matching. The effects are small, but visible in the M0 maps and in the subcutaneous fat region in the T2 maps. 

  
Figure 5. Comparison of the MRF-based ΔB0 map estimation with a standard TSE-based technique. The ΔB0 map estimated from the B0-MRF data is close to that obtained with a TSE sequence. The maximal 

difference is 105 Hz, which could be caused by phase errors in the MRF sequence due to system imperfections or temperature induced B0 drift, which can be as much as 1500 Hz/hour during in-vivo imaging. 

Scan parameters for the TSE sequence: resolution = 2.5×2.2×3.0 mm3, TE/TR = 12/300 ms, readout gradient shift = 150 µs, echotrain length (ETL) = 5, scan time = 9 min. 
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Synopsis: Multi-shot EPI readout-approaches provide high spatial resolution at reduced geometric distortions and improved SNR in diffusion weighted imaging (DWI). As a specific challenge, multi-shot 
acquisition data require corrections for motion-induced, shot-specific phase errors, e.g. using additional navigator signals or appropriate self-navigation. Furthermore, proper fat-suppression is challenging in 

DWI, especially at B0 critical regions, making the use of chemical-shift encoding interesting. Therefore, an iterative, model-based reconstruction algorithm with self-navigation and water/fat decomposition, 

is proposed in this work. In-vivo examples in the leg and head-neck regions demonstrate improved water/fat separation as compared to acquisition-navigator approaches, while measurement times can be 

shortened. 

Introduction: Fat is a confounding factor for EPI-based diffusion-weighted imaging (DWI)1 due to the large chemical-shift effect. To overcome the imperfections of conventional fat-suppression techniques,  

chemical-shift encoding2,3 has been recently proposed4-6 to handle even multipeak fat spectra in EPI5,6. Multi-shot EPI has gained growing popularity7,8 in DWI to reduce geometric distortion, making motion-

induced shot-to-shot phase errors correction via extra-navigated7,8 or self-navigated9-11 approaches necessary. However, when combined with chemical-shift encoding, the presence of shifted fat in the 
navigator signal can impair image reconstruction and degrade the quality of final water images. To circumvent such artefacts, we propose an extended model-based self-navigated water/fat decomposition 

resolved EPI (MSDE) image reconstruction algorithm to jointly estimate water and fat while correcting for the motion-induced shot-to-shot phase variations. The adverse effects of the shifted fat is successfully 

mitigated, and no extra navigator8 signal is required. 

Methods: The DWI signal model 𝑠𝑛,𝑙,𝑗 for a k-space sample 𝑘𝑡 at the 𝑛-th chemical-shift encoding point Δ𝑇𝐸𝑛, shot 𝑙 and coil 𝑗 can be written as: 

𝑠𝑛,𝑙,𝑗(𝑡) = ∫ [𝑐𝑗(𝑟) 𝜌𝑤(𝑟) + ∑ 𝛼𝑚𝑐𝑗(𝑟) 𝜌𝑓(𝑟)𝑒𝑖𝜓𝑓,𝑚(Δ𝑇𝐸𝑛+𝑡)

𝑀

𝑚=1

] 𝑒𝑖2𝜋𝜓𝐵(𝑟)Δ𝑇𝐸𝑛𝑒𝑖𝜙𝑛,𝑙(𝑟) 𝑒−𝑖𝑘𝑡𝑟 𝑑𝑟        

where 𝜌𝑤 and 𝜌𝑓 denote the complex-valued water/fat components, 𝑐𝑗 the coil sensitivities, 𝛼𝑚 and 𝜓𝑓,𝑚 the relative amplitude and chemical-shift for each peak 𝑚 of the M-peak fat model, and 𝑟 the spatial 

position. 𝜓𝐵 is the B0 inhomogeneity map and 𝜙𝑛,𝑙 the motion-induced phase map, which are modulated in image-space avoiding the computational burden12,13 imposed by equivalent k-space convolutions. 

The extended model-based water/fat separation can be solved with the conjugate gradient method (CG), by minimizing: 

{𝛲𝑤 , 𝛲𝑓} = argmin
𝛲𝑤,𝛲𝑓 ∈ ℂ𝑄

‖�̂�𝑋 − 𝑆‖
2

2
 

where 𝑄 is the number of voxels, �̂� the coefficient matrix, 𝑋 = [𝛲𝑤 , 𝛲𝑓]𝑇 = [𝜌𝑤
1, … , 𝜌𝑤

𝑄, 𝜌𝑓
1, … , 𝜌𝑓

𝑄]
𝑇
 the water/fat images, and 𝑆 the joint vectorized representation of all signals for 𝑁 chemical-shift 

encoding points, 𝐿 shots, and 𝐽 coils. The sequence and general reconstruction pipeline are illustrated in Figure 1. It is the aim to fully leverage all data sampled in a usual DWI scan. Thus, from chemical-

shift encoded non-DWI measurements, a B0 map, and water and fat threshold-based masks can be derived using an image-based water/fat decomposition approach for EPI (IDE)6. Furthermore, those non-

DWI data are used to estimate coil-sensitivity maps (CSM) that match the EPI scan data conditions (geometric distortion). This is done by 1) using water-fat-JSENSE14, or 2) through ESPIRiT15 by performing 

water/fat separation for data acquired by each coil individually (with the estimated B0 map from previous step), and estimating the merged water/fat (position-corrected) CSM. 

For the diffusion measurements, a Gauss-Newton solver is implemented to jointly estimate water, fat, and shot-to-shot phase maps. Using first-order Taylor expansion, the phase term error can be approximated 

as 𝑒𝑖∆𝜙𝑛,𝑙(𝒓) ≈ 1 + 𝑖∆𝜙𝑛,𝑙(𝒓) and updated for the next iteration. The number of iterations is empirically chosen to be 10. The unknown vector ∆𝑌 can be determined by minimizing, 

{∆𝛲𝑤 , ∆𝛲𝑓 , ∆Φ1,1, . . . , ∆Φ𝑁,1, . . . , ∆Φ𝑁,𝐿} = argmin
∆Φ𝑛,𝑙 ∈ ℝ𝑄

Δ𝛲𝑤,Δ𝛲𝑓 ∈ ℂ𝑄

‖�̂�∆𝑌 − ∆𝑆‖
2

2
 

where �̂� is the coefficient matrix of the Gauss-Newton system,  

∆𝛷𝑛,𝑙 = [∆𝜙𝑛,𝑙
1, … , ∆𝜙𝑛,𝑙

𝑄]
𝑇
 for 𝑛 = 1, . . . , 𝑁; 𝑙 = 1, . . . , 𝐿, and ∆𝑆 = 𝑆 − �̂��̅� with the current estimated �̅�. The pre-calculated water/fat masks are applied to the pre-estimated CSM to stabilize the estimation. 

To enforce smoothness of the estimated phase maps, a 2D triangular window14 (width set empirically to 5/6 of the matrix size) is applied in k-space for each Gauss-Newton iteration. 

Experiments were conducted both in head-neck regions and in the lower leg (4 subjects, 3T, Philips, Best, The Netherlands), using a spin-echo DW segmented EPI sequence with three b-values (0, 200, 400 

s/mm2)/(0, 300, 600 s/mm2) sampling 4/6 interleaves at TE=64/59ms using 16-channel head-neck/8-channel knee coils, TR=2000 ms at resolution: 1.4×1.5×4 mm3. The three Δ𝑇𝐸 were chosen as 0.2/1.0/1.8 

ms with respect to the spin echo. For comparison, an extra 2D-navigator8 was acquired for each diffusion shot. A multi-peak fat model6 was used for all reconstructions.  

Results: Figure 2 shows a DWI data set reconstructed using the proposed MSDE approach with the CSM obtained from respectively SENSE pre-scan, ESPIRIT, and water-fat-JSENSE. The two approaches 

using the self-calibrated CSM show improved water images compared to the one with the pre-scan. Figure 3 shows results of one subject’s leg, comparing IDE, the extended model-based water/fat separation 
with extra navigators, and the proposed self-navigated (MSDE). The artefacts shown in the water/ADC maps of the first two methods can be eliminated by using self-navigation. Figure 4 shows estimated 

phase maps from MSDE at one Δ𝑇𝐸 and the phase/magnitude of the extra navigators which contain shifted fat signal for comparison. Figure 5 shows the performance of the three approaches in the head-

neck region. The examples show that the MSDE can avoid signal cancellations in the extra-navigated results. 

Discussion and conclusion: The proposed MSDE algorithm provides more reliable water/fat separation for DWI compared to IDE. This is guaranteed by (1) the model-based reconstruction with fat off-

resonance modulation in k-space, (2) the reduction of the spatial mismatch between CSM and EPI data, via integrated CSM estimation, (3) self-navigation to avoid measuring extra navigators which prolong 
acquisition times, suffer from poor SNR (acquired at TE > 100ms) and contain shifted fat signal, and (4) chemical-shift encoding, as an intelligent way of signal averaging, providing more data that help to 

better condition the inverse problem. This also supports the self-navigation to deal with the increased g-factor effects at large shots number.  
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Figure 1. Sequence diagram and the schematic reconstruction pipeline. (A) Chemical-shift encoded segmented DW-EPI sequence6 equipped with extra navigators for comparison. In this work we want to 
eliminate the navigator. (B) First, a B0 map and water/fat images are estimated from the b = 0 s/mm2 data. Second, self-calibrated CSM can be calculated by water-fat JSENSE18 or ESPIRiT19 and masked by 

water/fat regions obtained by thresholding. Finally, DW water/fat images with corrected phase can be jointly calculated using the proposed MSDE method for each individual DW data set. 

 

Figure 2. Impact of CSM quality. Normalized coil sensitivity maps acquired from a (non-EPI) pre-scan, from ESPIRiT, and water-fat JSENSE using the actual 6-shots (b = 0 s/mm2) data, are shown along 

with the corresponding DW water/fat images estimated via MSDE. Some artefacts can be seen in the water image with pre-scan CSM (marked by red arrow), which may result from the B0 introduced 

geometric distortion mismatch with the EPI image. ESPIRiT/water-fat JSENSE can avoid this bias with the help of CSM self-calibration and provide improved results.  

 

Figure 3. Comparison of three different methods in the lower leg of a normal volunteer. The IDE and model-based with extra navigator show some artefacts in the final water images, mainly due to the lower 

SNR (at TE>100 ms) and presence of shifted fat in the navigator. This can be mitigated through MSDE using self-navigation. Besides, with model-based reconstruction, the latter two results show improved 

fat images without fat aliasing results from EPI alternating trajectory6 (blue arrows). Corresponding ADC maps are shown in the lower panel, which underline the above findings (red arrows). 

 

 

Figure 4. Comparison of the extra DW navigators and self-navigation for six shots. 
The navigator amplitude/phase (b = 600 s/mm2) and the phase estimated by self-

navigation at one given Δ𝑇𝐸𝑛 are displayed. The extra navigator was acquired at 

TE = 104 ms showing a relatively low water amplitude compared to fat due to the 

respective diffusion properties. In addition, the fat is shifted with respect to the 

water (red arrows), which results in the marked artifacts in Figure 3. These effects 
can be mitigated by the joint model-based estimation and self-navigation of 

MSDE. 

 

Figure 5. Comparison of three different methods in one subject’s head-neck region for 4 shots. Signal 

cancellations can be seen in both image reconstructions using the extra 2D navigators for the diffusion water 
images (red arrows). The MSDE can avoid this signal loss and produce reliable water images, even at the 

highest b-value. The consequences can also be seen in the ADC mapping below. 
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Synopsis 

We demonstrate that a high learning rate, small network size, and early stopping in unsupervised deep learning for IVIM model fitting can result in sub-optimal solutions and correlated 

parameters. In simulations, we show that prolonging training beyond early stopping resolves these correlations and reduces parameter error, providing an alternative to exhaustive 

hyperparameter optimization. However, extensive training results in increased noise sensitivity, tending towards the behavior of least squares fitting. In in-vivo data from glioma 

patients, fitting residuals were almost identical between approaches, whereas pseudo-diffusion maps varied considerably, demonstrating the difficulty of fitting D* in these regions. 

Introduction 

The intravoxel incoherent motion (IVIM)1 model for diffusion-weighted imaging (DWI) is a biexponential model composed of diffusion coefficient (D), pseudo-diffusion coefficient 

(D*), and perfusion fraction (F). Despite the various IVIM fitting approaches available2,3, IVIM remains challenging in the in-vivo brain due to low signal-to-noise ratio (SNR) and low 

F4. Recently, deep neural networks (DNN) were introduced5 as a promising alternative for IVIM fitting. Kaandorp et al.6 demonstrated unexpected correlations between the perfusion 

parameters with this approach, and resolved these by optimizing various hyperparameters (IVIM-NEToptim). Although IVIM-NEToptim showed promising results in the pancreas6, 

applying it to brain data showed poor anatomy generalization and high D* values7.  

In this work, we explore the impact of learning rate, network size, and training time on the convergence behavior of the unsupervised DNN loss term, and on the accuracy of the 

parameter estimates. We demonstrate the possible pitfalls associated with both early stopping and extensive training, using both simulations and in-vivo data from glioma patients. 

Methods 

We implemented the original DNN architecture of Barbieri et al.5 in Pytorch 1.8.1. The network architecture was a multi-layer perceptron with 3 hidden layers. The network input 

consisted of the measured DWI signal at each b value, and the network output consisted of the three IVIM parameters plus an extra parameter S0, also considered in IVIM-NEToptim. 

These parameters were constrained by absolute activation functions and scaled to appropriate physical ranges (below). The network was trained using the mean-squared error (MSE) 

loss between the input signal and the predicted IVIM signal. 

Training and validation IVIM curves were simulated by uniformly sampling the parameters between: 0≤S0≤1, 0.5×10-3≤D≤5×10-3 mm2/s, 0≤F≤50%, and 10×10-3≤D*≤100×10-3 mm2/s, 

and considering 16 b values4. Validation data consisted of 100,000 random IVIM curves. Training was performed for 4000 epochs with 500 batches per epoch and batch size 128, 

similar to previous approaches5,6. Rician noise was added to the signals such that at S0=1 the SNR was 200. Four networks were evaluated by considering two different numbers of 

hidden units in each layer (#units = 16, 64) and two different learning rates (lr = 1×10-3, 1×10-4). For each network, we computed the MSE loss, Spearman’s correlation (ρ) and 

normalized parameter MSEs at the end of each epoch. 

The performance of the most stable network in terms of validation convergence was evaluated by examining the distribution of individual datapoints in predicted-target scatter plots, 

and using in-vivo data from glioma patients (white matter SNR=30)4. Performance was assessed at three points during training: (i) when the validation loss did not improve over 10 

epochs (NNEarlystop10), representing early stopping as used in previous approaches5,6; (ii) when MSE-D* was at a minimum (NNMin(MSE-D*)); (iii) at the last epoch (NNEpoch4000), 

representing extensive training. Comparisons were also made to Least Squares (LSQ) and IVIM-NEToptim. 

Results 

Using lower #units reduced convergence speed, whereas higher learning rate resulted in spiky convergence of the unsupervised loss term, which could result in sub-optimal solutions 

(Figure 1). Therefore, using #units=64 and lr=1×10-4 was considered the most stable network.  

The early stopping criterion (patience=10 epochs) resulted in sub-optimal solutions prior to true convergence (Figure 1), where parameters were strongly correlated (Figure 2A). 

Prolonging training resolved these correlations and reduced parameter MSEs (Figure 2). However, training substantially longer resulted in increased parameter MSEs, particularly for 

D* (Figure 2B). Figure 3 shows that at NNEarlystop10, the predicted parameters for low SNR (low S0) signals are apparently biased towards the center of the simulated distributions, 

particularly for D*. As training progresses, the estimates corresponding to low SNR signals exhibit higher variability and display a distribution tending towards that of LSQ. 

For the in-vivo data, prolonging training also improved DNN fitting and reduced root-mean-square error (RMSE), which became increasingly similar to the RMSE of LSQ as training 

progressed (Figure 4). However, although the RMSE-maps were similar between approaches, the D*-maps differed substantially, particularly for low SNR regions. As found in the 

simulations, at NNEarlystop10, the DNN tended to estimate D* towards the center of the simulated distribution, whereas prolonging training resulted in greater variability. In contrast, 

IVIM-NEToptim displayed inferior RMSE and high D*, as reported elsewhere for the brain7.  

Discussion and Conclusion 

The development of advanced estimators for IVIM modelling is often motivated by a desire to produce smoother parameter maps than LSQ, with higher accuracy and precision3. The 

introduction of DNNs for IVIM fitting shows promise to this end5, yet performance may be conditional on a myriad of choices regarding network architecture and training strategy6,7. 

In this work, we showed that high learning rate and early stopping may lead to correlated parameter estimates and sub-optimal model fitting. We showed that a lower learning rate 

results in more stable convergence, and extending training time leads to reduced parameter correlations and parameter error. However, extensive training resulted in an increased 

sensitivity to noise, somewhat akin to LSQ fitting. While this may be undesirable, it could also be argued that the corresponding variability observed in the parameter maps is indicative 

of the underlying uncertainty, which is indeed useful information. This uncertainty is exemplified by the contrasting D*-maps between approaches, despite the similar RMSE, and 

illustrates the difficulty in estimating D* in the brain. 
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Figure 3: Scatter plots of ground-truth parameters (targ) against predictions (pred) 

for each of the three validation points (NNEarlystop10, NNMin(MSE-D*), and NNEpoch4000) 

for the network trained with #units=64 and lr=1×10-4, as well as for LSQ. All plots 

have S0 as color variable where S0=1 corresponds to SNR=200, with dark blue the 

lowest S0 and green/yellow the highest S0. During training, the network initially 

predicts estimates close to the center of the simulated distributions (NNEarlystop10), 

whereas after extensive training (NNEpoch4000) it shows similar behavior to LSQ. 

Figure 1: Validation loss curve of the four trained networks with different #units [16, 64] and lr 

[1×10-3, 1×10-4] evaluated for 4000 epochs, where each epoch consisted of 500x128 training 

batches. The red square highlights where the validation loss did not improve over 10 epochs and 

the early stopping criterion would have ended the training, showing sub-optimal convergence of 

the unsupervised loss term. The arrows indicate the three validation points (NNEarlystop10, NNMin(MSE-

D*), and NNEpoch4000) for the network trained with #units=64 and lr=1×10-4. 

Figure 1: (A) Spearman rank correlation plot of the perfusion parameters (ρ(D*,F)) 

for the four trained networks with different #units [16, 64] and lr [1×10-3, 1×10-4] 

evaluated for 4000 epochs, showing that emerging correlations are resolved during 

training. (B) Plots of normalized MSE for each parameter, showing that each 

parameter has an optimum solution during unsupervised training. As training 

proceeds, the MSE for each parameter eventually increases, especially for D*. 

Figure 2: IVIM parameter maps and RMSE-maps (with corresponding b = 0 map) generated 

for in-vivo data from a glioma patient, when fitted by the DNN at each of the three validation 

points (NNEarlystop10, NNMin(MSE-D*), and NNEpoch4000) for the network trained with #units=64 

and lr=1×10-4, as well as for LSQ and IVIM-NEToptim. The tumor is in the center of the right 

hemisphere. 
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Synopsis: Next to parenchymal diffusion and microvascular pseudo-diffusion, a third diffusion component is present in cerebral intravoxel incoherent motion (IVIM) imaging, representing interstitial fluid. 

Fitting the three-component IVIM model using conventional fitting methods strongly suffers from image noise. Therefore, we explored the applicability of a physics-informed neural network (PI-NN) fitting 

approach, previously shown to be more robust to noise. Using test-retest data from sixteen patients with cerebrovascular disease, we found higher repeatability of all IVIM parameters using PI-NN. 

Furthermore, simulations showed that PI-NN provided more accurate IVIM parameters. Hence, using PI-NN is promising to obtain tissue markers of cerebrovascular disease. 

 

Introduction 

Intravoxel incoherent motion (IVIM) imaging is a diffusion-weighted MR technique, which can simultaneously measure the parenchymal diffusion (Dpar) and microvascular pseudo-diffusion (Dmv).
1 Recently, 

the presence of a third, intermediate diffusion component (Dint) was revealed, which was suggested to represent interstitial fluid (ISF) within the parenchyma.2,3 Dint was furthermore found to be related to 

cerebral small vessel disease (cSVD) markers, such as white matter hyperintensities (WMH).2 However, with current fitting techniques, extracting accurate voxel-wise measures for the three diffusion 
components is extremely hard due to the strong influence of noise. Recently, Troelstra et al.4 showed that fitting a tri-exponential IVIM model using an unsupervised physics-informed neural network (PI-

NN) resulted in more robust voxel-wise IVIM parameters compared to the conventional least squares (LSQ) method in the liver.  

In this study, we have adapted the three-component PI-NN to estimate the cerebral diffusion components (Dpar, Dint and Dmv). We aimed to assess the performance of our PI-NN compared to conventional 

LSQ in terms of test-retest repeatability (using in-vivo data of patients with cerebrovascular disease) and accuracy (using simulations).  

 

Methods 

In-vivo data: Sixteen patients with cerebrovascular disease (cSVD (n=11) and cortical stroke (n=5)) underwent brain MRI twice on separate days (Philips Achieva 3.0T). IVIM images were acquired with 

diffusion sensitization in three orthogonal directions, and included an inversion pulse for cerebrospinal fluid suppression (single-shot spin-echo echo-planar-imaging (EPI), 2.4mm cubic voxel size, b-values: 

0,5,7,10,15,20,30,40,50,60,100,200,400,700,1000 s/mm2). Additionally, T2-weighted FLAIR and T1-weighted images were acquired for anatomical reference.  

Image analysis: The IVIM images were corrected for head displacement, EPI and eddy current distortions (ExploreDTI). The three-component cerebral IVIM model, accounting for the inversion recovery, 

was described as:2 

𝑆(𝑏) = 𝑆(0) ∙ [
(1 − 𝑓𝑚𝑣 − 𝑓𝑖𝑛𝑡)𝐸1,𝑝𝑎𝑟𝐸2,𝑝𝑎𝑟𝑒−𝑏𝐷𝑝𝑎𝑟 + 𝑓𝑖𝑛𝑡𝐸1,𝑖𝑛𝑡𝐸2,𝑖𝑛𝑡𝑒−𝑏𝐷𝑖𝑛𝑡 + 𝑓𝑚𝑣𝐸1,𝑚𝑣𝐸2,𝑚𝑣𝑒−𝑏𝐷𝑚𝑣

(1 − 𝑓𝑚𝑣 − 𝑓𝑖𝑛𝑡)𝐸1,𝑝𝑎𝑟𝐸2,𝑝𝑎𝑟 + 𝑓𝑖𝑛𝑡𝐸1,𝑖𝑛𝑡𝐸2,𝑖𝑛𝑡 + 𝑓𝑚𝑣𝐸1,𝑚𝑣𝐸2,𝑚𝑣

] 

with 𝐸1,𝑘 = (1 − 2𝑒
−

𝑇𝐼
𝑇1,𝑘+ 𝑒

−
𝑇𝑅

𝑇1,𝑘) for 𝑘 = 𝑝𝑎𝑟, 𝑖𝑛𝑡;  𝐸1,𝑚𝑣 = (1−𝑒
−

𝑇𝑅
𝑇1,𝑏𝑙𝑜𝑜𝑑) ; 𝐸2,𝑘 = (𝑒

−
𝑇𝐸

𝑇2,𝑘) for 𝑘 = 𝑝𝑎𝑟, 𝑖𝑛𝑡, 𝑚𝑣 

Here, fmv and fint are the volume fractions of the Dmv and Dint components, respectively. Both LSQ and PI-NN fitting approaches were applied to the Trace images in a voxel-wise manner. For the LSQ approach, 

a two-step Levenberg-Marquardt algorithm was used with lower and upper bounds equal to typical ranges found with IVIM in the human brain (Table 1).2 For the PI-NN approach, the hyperparameters and 
training features were based on a previous study with some small adjustments to make it suitable for brain data.5 For example, the loss function was changed according to Equation 1. The diffusivity parameters 

were constrained by sigmoid functions, and the fractions were constrained to be positive (Table 1). To mitigate the problem of variable results due to repeated training, we trained 20 instances of the PI-NN 

model on all brain voxels in the in-vivo dataset and averaged the corresponding predictions.5 

The white matter (WM) and cortical gray matter (cGM) were automatically segmented from the T1-weighted images (Freesurfer), whereas WMH were semi-automatically segmented from the FLAIR images.6 

Statistical analysis: After voxel-wise fitting, the IVIM parameters were averaged over all brain voxels per subject scan. As a measure of precision, the test-retest repeatability of these IVIM parameters was 
quantified using the within-subject coefficient of variation (CV) and the intraclass correlation coefficient (ICC) (calculated using a one-way random model).7 Statistical difference between CVs obtained with 

LSQ and PINN was tested with a paired Wilcoxon signed-rank test. Furthermore, Bland-Altman plots were created to visually compare the effect of PI-NN and LSQ on the repeatability.  

Simulations: 10.000 IVIM signal curves were generated using Equation 1, while randomly sampling the five IVIM parameters from a Gaussian distribution (97.7% within the ranges given in Table 1). 

Gaussian noise was added, similar to the noise level in our in-vivo data (signal-to-noise ratio at b=0 s/mm2 was 35).8 An ensemble of 20 PI-NN models was trained on 1.000.000 noisy IVIM signal decay 
curves. Subsequently, the PI-NN and LSQ fitting approaches were applied to the synthesized curves to predict the IVIM parameters. The accuracy of both methods was quantified with the normalized root-

mean-square error (NRMSE) between all predicted and ground-truth IVIM parameters. 

 

Results 

In-vivo data: The IVIM parameter maps obtained with the PI-NN and LSQ fitting approach of a representative cSVD patient are shown in Figure 1. The PI-NN maps appear smoother, while still retaining 

reasonable contrast between different tissue types, e.g. higher Dpar, higher fint and lower Dmv in WMH compared to normal-appearing WM (NAWM). The PI-NN method was more precise than the LSQ, as it 
showed higher test-retest repeatability in terms of lower CV and higher ICC values (Table 2). This was also illustrated by the smaller differences between the test-retest of the PI-NN measurements using 

Bland-Altman plots (Figure 2).  

Simulated data: Figure 3 shows scatterplots of the ground-truth and predicted IVIM parameters. Overall, the PI-NN was more accurate as it had lower NRMSE than LSQ (Table 2). 

 

Discussion  

In this study, we demonstrated the applicability of a PI-NN for three-component cerebral IVIM fitting in patients with cerebrovascular disease. The PI-NN method resulted in more precise (repeatable) and 
more accurate IVIM parameters as compared to the LSQ method. The high-quality parameter maps generated with PI-NNs are needed for visual evaluation of increased ISF (Dint, fint), microstructural damage 

(Dpar) and microvascular alterations (Dmv, fmv) within patients, and enables assessment of these parameters in small brain structures, such as small WMH lesions or peri-lesional WM. 
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Table 1. Typical IVIM parameter ranges found in the human brain2, and additional information about the LSQ and PI-NN fitting approach. For LSQ, 

a two-step Levenberg-Marquardt algorithm was used: 1) Dpar was estimated by fitting a mono-exponential function using b≥200 s/mm2; 2) all IVIM 
parameters were fitted with Eq. 1 using all b-values (with Dpar from step 1 as starting value and upper bound). For PI-NN, the diffusion parameters 

were constrained by a sigmoid function with 60% wider ranges than the reported typical ranges, whereas the fractions were constrained to be positive. 

 

Figure 1. An example of the FLAIR image and the cGM, NAWM and WMH 

segmentation (top row). The corresponding IVIM parameters maps are 
shown, obtained with the PI-NN fitting approach (left column) as well as the 

LSQ fitting approach (right column). The histograms above the colorbars 

visualize the IVIM parameter distribution in cGM (blue), NAWM (yellow) 
and WMH (pink) of the whole cerebrum. The PI-NN maps appear less noisy, 

while still retaining contrast between different tissue types (e.g. higher Dpar, 

higher fint and lower Dmv in WMH compared to NAWM). 

 

Table 2. The repeatability and accuracy as a measure of performance for the PI-NN fitting approach versus the LSQ fitting approach. The repeatability 

was determined by the coefficient of variation (CV) and the intraclass correlation coefficient (ICC) for all IVIM parameters. Low CV values and 

ICC values close to 1 represent good test-retest repeatability. The paired Wilcoxon signed-rank test showed significantly lower CV values for PI-NN 

compared to LSQ. The accuracy was expressed in the normalized root-mean-square error (NRMSE). Low NRMSE values represent high accuracy. 

 

Figure 3. The scatter plots show the 

ground truth IVIM parameters of the 
simulated data on the horizontal axis 

and the predicted IVIM parameters on 

the vertical axis using the PI-NN 
method (green) as well as the LSQ 

method (blue). The LSQ method 

regularly finds the optimal solution in 
the minimum or maximum bound that 

was given as constraint, which is far 

from the ground-truth IVIM values. 
The point clouds of the PI-NN appear 

more coherent and closer to the dashed 

predicted=ground-truth line compared 
to the LSQ method, hence showing 

higher accuracy of the PI-NN method. 

 

Figure 2. The Bland-Altman plots of the 

test-retest IVIM parameters. The 
difference between test-retest IVIM 

parameter measurements is smaller 

when using the PI-NN fitting approach 
(green) compared to the LSQ fitting 

approach (blue), which is indicated by 

the distance between the dotted lines. A 
systematic offset can be observed 

between the PI-NN and LSQ fitting 

approaches, probably due to the lower 
accuracy of the LSQ method (revealed 
by the simulations). 
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Synopsis: The stability of the extended Intravoxel Incoherent Motion Diffusion Tensor Imaging (IVIM-DTI) model was tested both by a simulation using realistic 

kidney parameter values and in-vivo in a healthy volunteer. The extended model describes both, the diffusion and perfusion components as a tensor to account for 

directionality. From the simulations, it was found that the interquartile range is below 10% for the diffusion-derived parameters with an SNR > 25, but an SNR > 35 

is needed to be within 15% for the pseudo-diffusion parameters. In-vivo results support those findings.   

 

Introduction: Intravoxel-incoherent motion (IVIM) imaging can provide information about the diffusion and perfusion processes of underlying tissue1. It describes 

the signal loss in dependency of b-values as a function of the signal at b=0 s/mm² (S0), the perfusion fraction (f), the diffusion coefficient (D) and the pseudo-diffusion 

coefficient (D*). 

𝑆(𝑏) = 𝑆0 ⋅ ((1 − 𝑓) ⋅ 𝑒−𝑏⋅ 𝐷 + 𝑓 ⋅ 𝑒−𝑏⋅𝐷∗
)                [1] 

In organs with ordered microstructure, such as the kidneys or skeletal muscle, a combination with diffusion tensor imaging (DTI) can be used to account for anisotropic 

diffusion processes. However, in this combined IVIM-DTI model the perfusion component is assumed to be isotropic, although there is evidence that the vessel 

structure is also anisotropic2. Therefore, an extended IVIM model was recently proposed which accounts for anisotropic perfusion: 

𝑆(𝑏) = 𝑆0 ⋅ ((1 − 𝑓) ⋅ 𝑒
−𝑏𝑔𝑇𝐷𝑔

+ 𝑓 ⋅ 𝑒
−𝑏𝑔𝑇𝐷∗𝑔

)  [2] 

where 𝑔 is the diffusion gradient directions vector, 𝐷 the diffusion tensor and 𝐷∗ the perfusion tensor3,4. From the tensors the mean diffusivity (MDdiff and MDpseudo) 

and fractional anisotropy (FAdiff and FApseudo) for the diffusion and pseudo-diffusion component can be derived. While this model was applied in the heart and kidneys 

already, little is known about its stability in different SNR regions and perfusion states3,4. The aim of this work was to quantify the fit stability for the different 

parameters. 

 

Methods: Simulations have been performed in Matlab (2021a). The signal was calculated for each unique parameter set using equation 2 and 32 different directions 

distributed over the positive hemisphere for all b-values ranging from 0 to 600 𝑠/𝑚𝑚2. As ground truth parameters we used values typically found in the kidneys: 

MDdiff ∈ [1.6; 2.2] 10−3𝑚𝑚2/𝑠, 𝑓 ∈ [0.15; 0.25] and MDpseudo∈ [20; 120]10−3𝑚𝑚2/𝑠 with each four equidistantly distributed values4,5. For each MD we sampled 

three random eigenvalues with the condition that FA<0.5. Rician noise was added to the signal and the IVIM-DTI tensor model was fitted to the signal using a two-

step algorithm: First, the diffusion tensor was fitted to b≥200 s/mm², then the diffusion tensor was fixed and f and D*-tensor were estimated. 100 iterations, adding 

of Rician noise, were performed and the relative error (𝑒𝑟𝑒 =
𝜃𝑒𝑠𝑡−𝜃𝑡𝑟𝑢𝑒

𝜃𝑡𝑟𝑢𝑒
) of the parameters was calculated for each iteration and parameter . The simulations were 

performed for SNR values ranging from 5 to 1000, where from 5 to 60 steps of 5 were taken. 

To investigate the influence of perfusion fraction on the parameters, simulations with SNR=25 were performed with six equidistantly spaced values between [0.15 

0.4]. For each value of f the same method as described above was applied. 

A healthy volunteer (male, 23 years) underwent MRI examination (3T, Philips Ingenia) of the kidneys in free breathing. The same b-values and directions as in the 

simulations were used. The scan parameters are listed in Table 1. A voxel-wise fit was performed. Segmentations were drawn in the kidney cortex and medulla in 

ITK snap6.  

  

Results: Figure 1 shows the dependence of the IVIM-DTI tensor parameters on SNR. The bias for diffusion-tensor derived parameters and f are below 1% for SNR 

> 25 and the interquartile range (IQR) stays below 6%.  Increased bias was found for the pseudo-diffusion-tensor derived parameters. For MDpseudo and FApseudo the 

IQR was below 20% for the same SNR. For an SNR > 35 the bias of the pseudo-diffusion parameter were below the 5% and the IQR stays below 13%. 

Figure 2 shows the dependence of the bias of parameters on f. Both diffusion-tensor derived parameters show a slight increase in the IQR, while the MDpseudo and f 

show a decrease in IQR. Over the span of f values the IQR of MDpseudo and f decreases by a factor of 1/3. 

In the volunteer scan, an SNR of 33 and 29 was found in the cortex and medulla, respectively. The mean parameter values are displayed in Table 2 and parameter 

maps are shown in Figure 3. The parameter maps of MDdiff, FAdiff and f are homogeneous, while MDpseudo and FApseudo show more outliers, visible as noisy pixels. 

This matches the expectations from the simulations.  

 

Discussion:. We found that diffusion-tensor derived parameters can be estimated accurately with an SNR>25. This is in line with the findings Froeling et al. found 

in skeletal muscle7. Higher SNR is necessary to estimate the pseudo-diffusion tensor accurately (SNR>35). D*  is strongly dependent on the perfusion fraction, which 

influences the amount of data available for the pseudo-diffusion parameter estimation. The perfusion related parameters, except FApseudo, increase in stability for 

increasing f.  

The diffusion-derived values found in the kidney cortex and medulla are in line with literature3,4. With the mean SNR of 31 found in our kidney data we expect the 

diffusion-derived parameters to be estimated accurately. More research into the dependence of the IVIM-DTI tensor model on different factors, such as motion blur 

or varying perfusion fraction, is needed to be able to understand the stability of the fit and to find the optimal measurement conditions. 

(Yushkevich, et al. 2006) 

Conclusion: Our simulations revealed that for precise and accurate results of the extended IVIM-DTI tensor model an SNR>35 is required and that a greater value 

of f increases the stability of the MDpseudo and f estimation. However, more research is needed to investigate all possible influences on the fit stability. 
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Table 1. The MRI sequence parameters used for the in vivo measurement. 

Echo Time [ms] Repetition Time [ms] Resolution [mm3] SENSE factor Slice thickness [mm] Number of slices 

55.181 2772.04 2.5 x 2.5 x 5 2 5 (0.3 gap) 18 

 

 

 

Table 2. The mean values ± standard deviation of the outcome measure for both the kidney cortex and medulla are shown.  

 

Param FAdiff MDdiff f FApseudo MDpseudo 

Cortex 0.31195 ± 0.16133 2.0175 ± 0.67276 0.23752 ± 0.24658 0.45137 ± 0.33983 37.0125 ± 51.1199 

Medulla 0.29534 ± 0.13081 2.0726 ± 0.52397 0.17895 ± 0.18016 0.50062 ± 0.34289 44.6947 ± 56.9836 

 

 

 

 

Figure 2 . Box plots of the relative errors 

at a constant SNR of 25 as a function the 

perfusion fraction (f) for the different 

parameters derived from the simulations. 

The MDdiff and for FAdiff  parameters 

show an increase interquartile range 

(IQR), whereas the MDpseudo and f are 

decreasing IQR.  Outliers are shown by 

the light grey dots. 

Figure 1. Box plots of the relative errors as a 

function of Signal to Noise Ratio (SNR) for 

the different parameters derived from the 

simulations. The MDdiff parameter is the 

most stable one and the bias is close to 0 at 

an SNR of 15. Similar results are found for 

FAdiff and f. The pseudo-diffusion tensor 

derived parameters MDpseudo and FApseudo 

show a lower precision even at high SNR.  

Figure 3. The different parameter maps 

showing the kidneys after fitting the extended 
IVIM-DTI model with colour bar showing the 

parameter value. The diffusion-derived 

parameter maps FAdiff and MDdiff are 
homogeneous without visible outliers. A more 

noisy behaviour is found for the pseudo-

diffusion derived parameter maps MDpseudo and 

FApseudo.  
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